
 96:891-905, 2006. First published May 10, 2006;  doi:10.1152/jn.00367.2006 J Neurophysiol
Adam L. Taylor, Timothy J. Hickey, Astrid A. Prinz and Eve Marder 
Conductance Spaces 
Structure and Visualization of High-Dimensional

 You might find this additional information useful...

31 articles, 15 of which you can access free at: This article cites 
 http://jn.physiology.org/cgi/content/full/96/2/891#BIBL

1 other HighWire hosted article: This article has been cited by 

  
 [PDF]  [Full Text]  [Abstract]

, December 1, 2006; 96 (6): 3389-3397. J Neurophysiol
V. Matveev, R. Bertram and A. Sherman 

 Residual Bound Ca2+ Can Account for the Effects of Ca2+ Buffers on Synaptic Facilitation

including high-resolution figures, can be found at: Updated information and services 
 http://jn.physiology.org/cgi/content/full/96/2/891

 can be found at: Journal of Neurophysiologyabout Additional material and information 
 http://www.the-aps.org/publications/jn

This information is current as of May 10, 2007 . 
  

 http://www.the-aps.org/.Physiological Society. ISSN: 0022-3077, ESSN: 1522-1598. Visit our website at 
by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2005 by the American 

 publishes original articles on the function of the nervous system. It is published 12 times a year (monthly)Journal of Neurophysiology

 on M
ay 10, 2007 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org/cgi/content/full/96/2/891#BIBL
http://jn.physiology.org/cgi/content/abstract/96/6/3389
http://jn.physiology.org/cgi/content/full/96/6/3389
http://jn.physiology.org/cgi/reprint/96/6/3389
http://jn.physiology.org/cgi/content/full/96/2/891
http://www.the-aps.org/publications/jn
http://www.the-aps.org/
http://jn.physiology.org


INNOVATIVE METHODOLOGY
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Taylor, Adam L., Timothy J. Hickey, Astrid A. Prinz, and Eve
Marder. Structure and visualization of high-dimensional conductance
spaces. J Neurophysiol 96: 891–905, 2006. First published May 10,
2006; doi:10.1152/jn.00367.2006. Neurons, and realistic models of
neurons, typically express several different types of voltage-gated
conductances. These conductances are subject to continual regulation.
Therefore it is essential to understand how changes in the conduc-
tances of a neuron affect its intrinsic properties, such as burst period
or delay to firing after inhibition of a particular duration and magni-
tude. Even in model neurons, it can be difficult to visualize how the
intrinsic properties vary as a function of their underlying maximal
conductances. We used a technique, called clutter-based dimension
reordering (CBDR), which enabled us to visualize intrinsic properties
in high-dimensional conductance spaces. We applied CBDR to a
family of models with eight different types of voltage- and calcium-
dependent channels. CBDR yields images that reveal structure in the
underlying conductance space. CBDR can also be used to visualize
the results of other types of analysis. As examples, we use CBDR to
visualize the results of a connected-components analysis, and to
visually evaluate the results of a separating-hyperplane (i.e., linear
classifier) analysis. We believe that CBDR will be a useful tool for
visualizing the conductance spaces of neuronal models in many
systems.

I N T R O D U C T I O N

In recent years, it has been recognized that the voltage-gated
conductances of a neuron are subject to continual regulation,
which helps maintain a target activity level (Desai et al. 1999;
Golowasch et al. 1999; LeMasson et al. 1993; Liu et al. 1998;
MacLean et al. 2003; Turrigiano et al. 1994). This realization
has spawned a number of questions. First, how is this done?
That is, what are the subcellular mechanisms underlying this
regulation? Second, why is it done in this way? What are the
critical properties of the neuron that are being maintained in a
particular regime? One key to addressing the second question
is understanding how the voltage-gated conductances deter-
mine the intrinsic electrophysiological properties of the neu-
ron, such as its firing rate in isolation, whether it is endog-
enously bursting, and the magnitude of postinhibitory rebound
(PIR) the cell exhibits.

Intrinsic properties are determined by the maximal conduc-
tances and kinetics of the different voltage-gated conductances
in the cell membrane. However, the mapping from maximal
conductances and kinetics to intrinsic properties can be com-

plex and nonlinear. It is sometimes assumed that two neurons
with similar intrinsic properties must have similar maximal
conductances, but recent work has emphasized that this is not
the case (Goldman et al. 2001; Golowasch et al. 2002; Prinz et
al. 2003). Furthermore, a particular intrinsic property is often
attributed to a particular voltage-gated conductance, but it is
clear that several voltage-gated conductances typically act in
concert to produce a given intrinsic property (Goldman et al.
2001; Golowasch et al. 2002; Harris-Warrick et al. 1995;
MacLean et al. 2003, 2005; Prinz et al. 2003). Therefore the
mapping from maximal conductances to intrinsic properties is
complex, and understanding how changes in the conductances
influence intrinsic properties is difficult.

As an alternative to hand-tuning the parameters of a neuro-
nal model, Prinz et al. (2003) systematically conducted a
coarse-grained scan of the maximal conductances of a model
with eight different voltage- and calcium-gated conductances.
The model was based on detailed voltage-clamp measurements
in cultured crustacean stomatogastric ganglion (STG) neurons
(Turrigiano et al. 1995). Prinz et al. (2003) thus constructed a
“database” of �1.7 million model neurons, which sampled
from the eight-dimensional space of maximal conductances on
a uniformly spaced grid. For each model in the database, a
variety of information was stored, including its spontaneous
activity type (e.g., silent, tonically spiking, bursting) and its
response to various perturbations. Thus the database contains a
good deal of information about the gross form of the mapping
from maximal conductances to intrinsic properties.

Unfortunately, extracting this information in a form that
gives insight into the relationship between maximal conduc-
tances and intrinsic properties is difficult. There are many
analytical tools that can be brought to bear on this problem,
such as dynamical systems theory (Guckenheimer and Holmes
1983; Strogatz 1994) and statistical machine learning (Bishop
1995; Hastie et al. 2003; Vapnik 1998), but we wished to find
a very simple method to lay out all the models in the database
“at a glance,” prior to performing these or other more in-depth
analyses. The space of maximal conductances is eight dimen-
sional, and so it is difficult to visualize how a given electro-
physiological property changes as the maximal conductances
change. In this paper, we apply a visualization technique,
called clutter-based dimension reordering (CBDR) (Peng 2005;
Peng et al. 2004), to the problem of visualizing the properties
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of a neuronal model in this eight-dimensional conductance
space. This is the first time, to our knowledge, that CBDR has
been applied in the context of neuronal modeling. CBDR
presents all of the sampled models in a single image, without
averaging, and reveals patterns in the database that were not
previously apparent. Furthermore, it serves as a useful com-
plement to other analysis techniques, such as connected-com-
ponents analysis and linear classification (i.e., hyperplane fit-
ting, a particular form of statistical machine learning). We find
it useful for conducting a preliminary survey of a large data-
base of model neurons.

M E T H O D S

The model used in the Prinz et al. (2003) database was derived from
a model of cultured crustacean STG neurons (Turrigiano et al. 1995).
Previous models had also used variants of this model (Goldman et al.
2001; Liu et al. 1998). The model contains eight different voltage- and
calcium-gated conductances: a fast sodium conductance (gNa); a fast,
transient calcium conductance (gCaT); a slow, transient calcium
conductance (gCaS); a fast, transient potassium conductance (gA); a
calcium-dependent potassium conductance (gKCa); a delayed-rectifier

potassium conductance (gKd); a hyperpolarization-activated mixed-cation
conductance (gh); and a leak conductance (gleak). To construct the
database, the maximal conductance of each was independently varied
between zero and some conductance-specific maximum. The maximum
value (in mS/cm2) was 500 for g�Na, 12.5 for g�CaT, 10 for g�CaS, 50 for g�A,
25 for g�KCa, 125 for g�Kd, 0.05 for g�h, and 0.05 for g�leak. (We denote the
maximal conductance of the sodium channel, for example, by g�Na.) Each
maximal conductance was varied in six steps from zero to the maximum,
resulting in 68 (�1.7 million) different models. Each model was simu-
lated, and several types of information about the behavior of each model
were collected.

The spontaneous activity of each model was automatically classi-
fied into one of four categories: silent, tonically spiking, bursting, or
irregular (Fig. 1) (see Prinz et al. 2003 for details on the classification
algorithm). In addition, the bursting models were subcategorized
according to how many local maxima of voltage occur during a single
burst. (Each local maximum could be either an action potential or a
subthreshold “hillock.”) Thus we sometimes speak of the “n-maxima-
per-burst bursting models” or the “n-MPB bursting models,” meaning
that subset of the bursting models that display n local maxima per
burst in the voltage trace. Tonically spiking models were distin-
guished from one-maxima-per-burst models based on the area under
the voltage trace between successive voltage minima (see Prinz et al.

FIG. 1. Different spontaneous activity types. Each row cor-
responds to a single model neuron, and 1 example of each
activity type is shown. Left: voltage waveform at steady state;
right: maximal conductances of the 8 conductance types for
that model. The maximal conductances are shown as a fraction
of the largest maximal conductance scanned in the database,
for the given channel type (see METHODS).
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2003). More details about the model and the database can be found in
Prinz et al. (2003).

All visualization and analysis done here was performed using
Matlab (The Mathworks, Natick MA).

Connected-components analysis

We were interested in the number of “islands” of each activity type
in conductance space. Assuming the sampling grid is dense enough
(and we believe it is—see Prinz et al. (2003); see also DISCUSSION), one
can use connectedness on the grid to drive conjectures about true
connectedness in the underlying continuous conductance space. We
investigated the number of islands of each behavior type on the grid
using a standard connected-components algorithm from the image
processing literature (Jain et al. 1995). This algorithm determines
whether any two models of a given class on the sampled grid are
connected. Two models are connected if there is a path (on the
sampling grid) from one model to the other, where every model on the
path is also part of the class in question. Intuitively, each connected
component is a separate island (Fig. 2). Essentially, the connected
components algorithm colors each model according to which con-
nected component it is in. Any two models with the same color are
connected; any two models with different colors are not.

In the definition of connected components given in the preceding
text, two points are in the same connected component if and only if
there is a path from one to the other such that all points in the path are
in the same class. A “path” is defined as a list of grid points, such that
subsequent points in the list are neighbors of each other. Two
definitions of “neighbor” are in common usage. We used a restrictive

definition, considering models that differed by one grid step in one
dimension to be neighbors, but not models that differed by one grid
step in multiple dimensions. In two dimensions, the restrictive defi-
nition implies that a single pixel has four neighbors (north, south, east,
and west, called the four-neighborhood), whereas the more permissive
criterion implies that a pixel has eight neighbors (the four-neighbors,
plus northeast, southeast, southwest, and northwest, and called the
eight-neighborhood). We chose the more restrictive definition because
we found that the different behavior types were highly connected even
using the more restrictive definition (see RESULTS).

We should stress that the connected components algorithm runs on
the full eight-dimensional dataset and that the dimensional stack
image is only a way to visualize the output (Fig. 2). In particular, we
note that dimensional stack images often make things look discon-
nected that are not.

Hyperplane fitting

We attempted to fit the boundaries of the various spontaneous
activity types using hyperplanes, following Goldman et al. (2001).
Given a vector of maximal conductances, g� � (g�Na,. . ., g� leak), the
equation of a hyperplane is

b � w � g� � b � �
i

wig� i � 0. (1)

where i ranges over the different conductances. w is a vector orthog-
onal to the hyperplane boundary, and b is equal to the distance from
the origin to the hyperplane along the direction of w, times the length
of w. This is a single linear equation and so in eight dimensions
defines a seven-dimensional hyperplane (Bishop 1995). For a given
boundary (e.g., silent/nonsilent, tonic/nontonic, bursting/nonbursting,
etc.), we attempted to find a w that provided an accurate prediction of
whether a given g� was in the class or not in the class.

Following Goldman et al. (2001), we quantified the accuracy of the
hyperplane fit using the success rate under the assumption that points
were equally likely to be drawn from either class. This is simply the
average of two fractions: the fraction of points in class A that are on
the correct side of the hyperplane and fraction of points in class B that
are on the other side of the hyperplane.

Although the success rate is a good measure of the hyperplane’s
goodness of fit, it has the disadvantage that it is not a continuous
function of w, which creates difficulties for many optimization tech-
niques. To find a w that provided good classification performance, we
therefore chose to optimize the negative cross-entropy (NCE) of the
classifier rather than the success rate (Bishop 1995). The NCE is the
negative log-likelihood of the data given the parameters, so choosing
parameters that minimize NCE selects a hyperplane that is the “most
consistent” with the data. The NCE is a continuous function of w, and
generally classifiers with high NCE tend to provide a high success
rate. (Empirically, we find this to be the case for our classification
problem.) The maximization was done using a Broyden-Fletcher-
Goldfarb-Shanno quasi-newton routine (the fminunc() function in
Matlab) (Bishop 1995).

Multi-class logistic regression

In the description in the preceding text, we assume that we want to
find a separating hyperplane between two different classes of models
(e.g., tonic neurons and nontonic neurons). More generally, however,
we really want to find a set of boundaries that divide the space into
multiple regions (e.g., silent, tonic, bursting, and irregular). One of the
simplest approaches to this problem is a linear discriminant. This is a
generalization of the approach described in the preceding text. For
each class, one defines a linear discriminant function, and the class
assigned to any given point in the space is the class for which the
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FIG. 2. Illustration of connected components. Top left: hypothetical three-
dimensional set of points, which consists of two tori (donuts) that interlock but
do not touch. Top right: result of applying the connected-components analysis
to this data set. Each component is colored a different color. Here each torus
is a single component because all points in a torus are connected to each other
but not to points in the other torus. Bottom left: result of applying dimensional
stacking to the data set shown in the upper left. In this case, dimensional
stacking corresponds to a montage of slices through the data set, each slice
taken at a particular value of z. The brackets on the right denote the individual
slices, and the z value where each slice was taken is denoted by the tics in the
top left panel. Bottom right: result of applying dimensional stacking to the data
set shown in the top right. Again, dimensional stacking corresponds to a
montage of slices through the data set, each slice taken at a particular value of
z. Comparing the lower left and lower right panels, note that many “blobs” that
appear to be different connected components in the dimensional stack image
are in fact slices through the same component, and that the true connectivity is
only revealed by examining the structure in the original, high-dimensional,
space.
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discriminant function is largest. The linear discriminant function for
class k has the form

yk�g�� � wk � g� � bk � �
i

wkig� i � bk. (2)

The NCE can again be defined for this case and can be used to find a
set of discriminant functions that effectively partition the conductance
space. The boundaries between classes in this case are found at places
where two classes are “tied” for having the largest discriminant
function. i.e. the two classes have equal discriminant functions, and all
other classes have lower discriminant functions. The condition that
two classes, i and j, have equal discriminant functions can be written

�wi � wj� � g� � �bi � bj� � 0. (3)

To be a boundary point between two classes, the point must satisfy
Eq. 3 but also be such that all other discriminants are lower than yi(g�)
and yj(g�). This implies that the boundaries between classes will be
hyperplanes but bounded by the regions where they intersect the
hyperplanes that divide other pairs of classes. If there are only two
classes, the boundary will be a simple hyperplane, defined by w �
wi � wj and b � bi � bj. Thus in the case of two classes, the equation
for the boundary between classes reduces to Eq. 1.

R E S U L T S

Construction of the dimensional stack image

We used CBDR (Peng 2005; Peng et al. 2004) to visualize
the Prinz et al. (2003) database. CBDR, in turn, uses a tech-
nique called dimensional stacking. Dimensional stacking is a
technique for viewing a high dimensional data set in only two
dimensions (LeBlanc et al. 1990). It is similar to the visual-
ization of a three-dimensional data set as a montage of two-
dimensional “slices” (Fig. 2). However, in dimensional stack-
ing, the process of making montages is iterated, yielding a final
image that is a montage of montages. For concreteness, we will
describe the construction of a dimensional stack image of the
database described in Prinz et al. (2003), an eight-dimensional
dataset with six sampled points in each dimension. The starting
point of a dimensional stack image is a grid scanning two
maximal conductances with all other maximal conductances
set to their minimum values (Fig. 3A). In Fig. 3A, the KCa and
Na maximal conductances are scanned with the rest of the
maximal conductances set to zero. Each square in this grid
would then be colored according to some property of that point
in the database, e.g., the spontaneous activity type. A 6 � 6
montage is then made of images of this sort (Fig. 3B) with each
individual image in the montage scanning g�Kd and g�Na and with
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Kd, CaT, h, CaS, leak, A are zero
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h, CaS, leak, A are zero
Kd, CaT, KCa, Na are scanned

leak, A are zero
h, CaS, Kd, CaT, KCa, Na are scanned

All conductances are scanned

FIG. 3. Example of dimensional stacking. A: visualization of two conduc-
tances (g�KCa and g�Na), with other conductances set to zero. Each conductance
is varied independently, resulting in a 6 � 6 grid. Each square would then be
colored according to some property of the corresponding neuron (e.g., spon-
taneous activity type). B: to visualize an additional two conductances, the grid
from A is embedded in a larger grid. The larger grid scans an additional two
conductances (g�Kd and g�CaT), and within each square of this larger grid is a 6 �
6 grid scanning the original two conductances (g�KCa and g�Na). The 6 � 6 grid
in A is found in the bottom-left corner because it corresponds to g�KCa � 0 and
g�A � 0. Overall, a 36 � 36 grid is formed, scanning four conductances total
(g�Kd, g�CaT, g�KCa, and g�Na). C: this process is then repeated, embedding the grid
from B in another 6 � 6 grid that scans g�h and g�CaS, thus forming a 216 � 216 grid
that scans 6 conductances. D: this process is repeated once more, embedding
the grid from C in another 6 � 6 grid that scans g� leak and g�A, thus forming a
1,296 � 1,296 grid that scans all 8 conductances. This grid contains a single
pixel for each model in the database (1,296 � 1,296 � �1.7 million models).
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two additional conductances (here, g�Kd and g�CaT) varying over
the montage. The original image (Fig. 3A) corresponds to the
bottom-left image in the montage because the original image
has both g�Kd and g�CaT set to zero. A 6 � 6 montage of 6 � 6
images yields a 36 � 36 image, which scans four conduc-
tances. A “second-order montage” is then made of these
montages (Fig. 3C) and scans an additional two conductances
(here g�h and g�CaS). This is a 6 � 6 grid of 36 � 36 montages,
thus 216 � 216 pixels total. A third-order montage is then
made from the second-order montages (Fig. 3D) and scans the
final two conductances (here, g� leak and g�A). This is a 6 � 6 grid
of 216 � 216 images, thus 1,296 � 1,296 pixels total, or �1.7
million pixels, equal to the number of models in the database.
This third-order montage is the final dimensional stack image.
In this way, a high-dimensional data set can be viewed, in its
entirety, in two dimensions.

Another way to describe dimensional stacking is as a linear
projection. Each point in the database can be described by its
eight maximal conductances, scaled so that each value is an
integer between 0 and 5 (as in Fig. 3). The pixel coordinates of
that model, in the dimension stack image shown in Fig. 3D,
would then be given by

x � 63k� leak � 62k�h � 6k�Kd � k�KCa (4)

y � 63k�A � 62k�CaS � 6k�CaT � k�Na, (5)

where k�Na, for instance, is the scaled maximal conductance of
the fast sodium channel. Although this is a linear projection, it
should be noted that the coefficients of the projection depend
on the number of samples per dimension in the database. If, for
instance, a new database was run with ten sample points per
dimension, the coefficients of Eqs. 4 and 5 would have to be
powers of 10 to prevent overlapping of points in the dimen-
sional stack.

Optimization of the stack order

When a dimensional stack image is constructed, choices
must be made about which conductances are to be the “high-
order” conductances and which are to be “low-order” conduc-
tances. In Fig. 3, g� leak and g�A are the highest-order conduc-
tances, and g�KCa and g�Na are the lowest-order conductances. In
addition, at each level one must decide which conductance will
be on the x axis and which on the y axis. This set of choices is
called the “stack order.” The stack order has a large impact on
the usefulness of the resulting visualization (see following
text). Because there are eight dimensions, there are 8! �
40,320 possible stack orders. (These can, however, be arranged
into pairs which differ only by a switch of the x and y axes, so
arguably the number of “meaningfully different” stack orders
is only 8!/2 � 20,160.)

The central idea of CBDR is to define an easy-to-compute
measure of the “usefulness” of a dimensional stack image and
to then use some sort of search procedure to find a stack order
that maximizes this measure. The measure of usefulness used
in the original work on CBDR (Peng 2005; Peng et al. 2004)
was only defined for binary (black-and-white) images, so we
developed a different measure, which we call “edginess.” This is
based on the idea that stack orders that yield large expanses of
solid color are useful, and thus stack orders that consist of
many small patches of color are less useful. For a candidate

stack order, we generate the dimensional stack image and then
count the number of pixel edges that have different colors on
either side of the edge. This number is the edginess of the
image. Edginess is actually a measure of the “uselessness” of the
image, and so we seek to minimize it not maximize it.

We use a local search optimization routine to find an image
with low edginess. The optimization proceeds by examining
the edginess of all stack orders that are “neighbors” of the
candidate stack order. A stack order is considered a neighbor of
the candidate stack order if it can be generated by swapping
two of the dimensions in the candidate order. Thus each stack
order has 8 � 7/2 � 28 different neighbors. After the edginess
of all neighbors has been computed, the neighbor with the
lowest edginess is kept and becomes the new candidate stack
order. If no neighbor has a lower edginess, the candidate stack
order is considered the optimal stack order. (Strictly speaking,
it is only locally optimal, but in practice this scheme seems to
work well. Sometimes we find it necessary to start the routine
from several (�5) different random stack orders and pick the
best of the final orders found.) Thus the algorithm moves from
a random initial stack order to one that has low edginess.

A dimensional stack image of every model in the Prinz et al.
(2003) database is shown in Fig. 4A1. Each pixel represents a
model, and the pixel’s color specifies the spontaneous activity
type of that model with bursting models subcategorized ac-
cording to how many maxima per burst (MPB) they display
(see METHODS). The mapping between color and activity type is
shown in Fig. 4C, which also shows the fraction of models in
the database that are of each type. Although some “structure”
can be seen in Fig. 4A1, such as the bands of gray representing
silent models, it leaves something to be desired. This gives rise
to the need for stack-order optimization.

A sequence of stack orders arrived at by the optimization is
shown in Fig. 4A. The initial stack order (Fig. 4A1) is essen-
tially arbitrary. One can see that each successive image looks
more “structured” than the last. The first image is mostly
“snow,” with few patterns visible, but the final image (Fig.
4A6, shown again at a larger scale in B) has clear patterns in it.

The intuition behind the method is that conductances that
have a big effect on the behaviors visualized will end up being
high order, whereas conductances that have a small effect will
end up being low order. If a particular conductance does not
affect the behavior type, it will tend to be moved to the bottom
of the stack order because in this way, long runs of solid color
may be generated. In a sense, the high-order conductances are
the ones to which the behaviors examined are sensitive and the
low-order conductances are the ones to which the behaviors are
less sensitive. Note that which conductances are high order and
which are low order will completely depend on what the
categories being visualized are. If, for instance, one was to
visualize the time-average membrane potential of the models
and then optimize the stack order, one would likely end up with
a very different optimal stack order.

A number of statements about the “layout” of models in
conductance space can be made, given this visualization (Fig.
4B). First, most of the nonbursting models are those with zero
calcium-activated potassium conductance (g�KCa). These corre-
spond to the large vertical band of blue and gray models on the
left-hand side of the image. Second, most one-maxima bursters
have zero fast sodium conductance (g�Na). These correspond to
the large horizontal band of bright-green models at the bottom
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of the image. Many one-maxima busters that have nonzero g�Na

have zero delayed-rectifier potassium conductance (g�Kd).
These correspond to the thin bright-green horizontal bands in
the image. Third, there seems to be a regular gradation of

bursters from few maxima per burst to many maxima per burst
as one increases g�Kd and decreases g�CaT (the fast, transient
calcium conductance). This is represented by the repeated
pattern of a gradient from green to yellow to orange to red
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found in the image. Fourth, the irregular bursters are almost all
models with low but nonzero g�KCa and correspond to models
that “would be” low maxima-per-burst bursters if their g�KCa
was higher. Thus the dimensional stacking technique allows
one to see structure in the data that is difficult to perceive
otherwise.

Visualizing the distribution of a subset of model neurons

Often one would like to understand how some set of con-
straints on the intrinsic properties of a neuron are reflected as
constraints on the maximal conductances of that neuron. For
instance, does a constraint on the intrinsic properties of a
neuron strongly constrain the range of possible maximal con-
ductances? Dimensional stacking provides an easy way to get
insight into such questions.

We examined the distribution in conductance space of an
interesting subset of models, the one-spike bursters with burst
periods between 0.9 and 1.1 s (Fig. 5). This group is a subset
of the 1-MPB bursters because it consists of 1-MPB bursters
the voltage maximum of which are more depolarized than 0
mV and that have a burst period with the given range. (Using
a threshold of 0 mV for counting a maximum as a “spike” is
somewhat arbitrary, but reasonable.) Although these con-
straints yield models that behave similarly, there are many
combinations of maximal conductances that can give rise to
this behavior (Fig. 5B). Examining the dimensional stack
image of this set (Fig. 5A), we see that models in this set span
the full range of g�Na, g�Kd, g�A, g�KCa, g�CaT, and g�CaS. (It also
turns out that they span the full range of g�h and g� leak, but this
hard to see in the image.) Furthermore, it is possible to see
some of the constraints on the maximal conductances that must
hold for the model to be in the set. For instance, the “banding”
pattern seen in the data is present because of the constraint that
the period must be between 0.9 and 1.1 s, which imposes a
constraint on the maximal conductances, particularly g�CaS,
g�CaT, g�A, and g� leak.

In addition to being useful for seeing structure in a database,
CBDR is also a useful complement to other techniques for gaining
such insight. In the following text, we illustrate the use of CBDR
in combination with two other techniques: connected-components
analysis and hyperplane fitting (i.e., linear classification).

Connected-components analysis

It is often of interest to know whether a given category of
model neuron occupies a single connected region in the pa-
rameter space or whether neurons of the category occur in
multiple, distinct “islands.” In the Prinz et al. (2003) database,
we wondered whether each of the different behavior types
(silent, tonic, bursting, irregular) found in this conductance
space are connected. For example, is there one contiguous

region of bursters in the space or do bursters occur in multiple,
separated “islands”?

Assuming the uniformly sampled grid is dense enough, one
can make reasonable conjectures about this question using
connected-components analysis on the sampling grid. Further-
more, dimensional stacking and CBDR are useful tools for
visualizing the results of such an analysis. For the silent, tonic,
and bursting models, we found that all or nearly all the models
were in a single connected component (on the sampling grid).
We visualized the results of this analysis using dimensional
stacking (Fig. 6). All the silent models were in a single
connected component (Fig. 6A). For the tonic models, 87
connected components were found, but 99.96% of the tonic
models were in the largest component (Fig. 6B, see inset for
examples of small connected components). For the bursting
models, 30 connected components were found, but 99.99% of
the bursting neurons were in the largest component. We were
concerned that the preponderance of bursting models in the
database (63% of models in the database are bursting; see Fig.
4C) might cause them to appear connected even if they were
not. To guard against this, we examined the connectivity of a
subset of the bursting models, the 6–10 maxima-per-burst
bursters. These comprise 12% of the models in the database.
For this subset, there are 451 connected components, but
99.33% of models in this class were in the largest component.
This suggests that the connectivity of the bursting neurons is
not caused merely by their prevalence in the database. Thus all
of the silent neurons, and nearly all of the tonic and bursting
neurons, were each contained in a single connected component
on the grid.

The irregular models, in contrast, had multiple components
with a nonnegligible fraction of models in them (Fig. 7). For
this group, there were 370 different connected components
with 84.5% of the irregular neurons in the largest one. Al-
though this is still a large fraction of the total, it falls short of
the fractions found for the silent, tonic, and bursting neurons.

Based on these results, we conjecture that for each of the
three major activity types (silent, tonically spiking, and burst-
ing), there exists one connected region that includes �99% of
the models of that type (measured by volume in conductance
space). Although this is only a conjecture, and is subject to a
variety of caveats (see DISCUSSION), it nevertheless seems to us
a reasonable conjecture, based on the results of the connected-
components analysis.

Hyperplane fitting

Another way of understanding the structure of regions in a
high-dimensional space is to use the methods of statistical
learning theory (Bishop 1995; Hastie et al. 2003; Vapnik
1998). In the context of discrete categories (e.g., silent, tonic,
bursting), all these methods essentially try to fit the boundaries

FIG. 4. Dimensional stack image of the Prinz et al. (2003) database and optimization of the stack order. A: series of dimensional stack images found during
edginess minimization. The first stack (A1) shows the initial stack order in which little structure is evident. The axes bars (bottom left of each sub-panel) indicate
which conductances are shown on the x and y axes and which conductance is the highest order, second-highest order, third-highest order, and lowest order. The
length of each bar indicates the width or height of a single step of the given conductance. Each subsequent stack is a single step of the minimization and differs
from the previous stack in that a single pair of conductances has been swapped in the stack order. Each step of the algorithm shows more “structure” than the
last, with the final stack being highly structured. The mapping between color and activity type is given in C. B: dimensional stack image with locally optimal
stack order. This panel is a larger reproduction of A6. C: fraction of models exhibiting a particular activity type. The bursting models are subdivided according
to how many voltage maxima occur during a single cycle (see text). The colors shown here for each activity type are used in the dimensional stack images of
A and B.
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FIG. 5. Distribution in conductance space of a set of model neurons. A: dimensional stack image of the set of one-spike bursters with a period of between
0.9 and 1.1 s. Pixels in green represent bursting models that emit one spike per burst with a burst period between 0.9 and 1.1 s. (A spike is defined here as a
local maximum of voltage that is more depolarized than 0 mV.) The large dots represent example models in this class the activity of which is shown in B. B:
activity and maximal conductances of example models. Each trace and bar plot corresponds to the model of the same color indicated in A. The traces show the
spontaneous activity of each model. Insets: single burst, with expanded time axis. The bar plots show maximal conductance, where each maximal conductance
has been normalized to the range 0–1.
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between categories with mathematical functions of some sort
(perhaps implicitly). Dimensional stacking can be a useful tool
for visualizing such fits and gaining insight into why a given
function does or does not fit the data.

Some of the simplest of statistical learning methods are
collectively referred to as linear classification methods. These
attempt to fit the boundaries between regions with linear
functions, often called hyperplanes because they are the high-
dimensional analog of a plane in three-dimensional space. We
used hyperplanes to fit the boundary between different activity
types and visualized the resulting fits using dimensional stack-
ing (Fig. 8). We did this not on the full database but on the
subset in which the models have no maximal conductances set
to zero (Fig. 8A). This is a population of 58 � 400,000 models.
We chose to focus on this subset because the borders of the
activity regions are simpler for it than for the full database.

We found that the boundaries between activity types were well
fit by hyperplanes over the ranges of maximal conductances found
in the database. We quantified the quality of fit by calculating the
success rate, a measure of how likely it is that a model is on the

correct side of the hyperplane (see METHODS). We found that a
hyperplane was able to separate the silent models from the
nonsilent models (i.e., the tonic, burster, and irregular models,
considered as a single group) with a success rate of 98.4% (Fig.
8B, top). This implies that the border between silent and nonsilent
models is well approximated by a hyperplane (again, over the
range of maximal conductances in the database). Fitting a hyper-
plane to the tonic/nontonic boundary produced a success rate of
89.3% (Fig. 8B, middle). This implies that a hyperplane is still a
good approximation to the border between tonic and nontonic
models, although not as good as for the silent/nonsilent models.
Projecting the data onto the plane spanned by the normals to these
two hyperplanes confirmed that the silent/nonsilent boundary was
sharp and nearly linear, whereas the tonic/nontonic boundary was
more gradual and displayed some amount of curvature (data not
shown). This is consistent with the higher success rate for the
silent/nonsilent hyperplane than for the tonic/nontonic hyperplane.

The fact that both the silent and tonic models can be
reasonably well fit by hyperplanes suggests that these two
hyperplanes might be combined to yield a good fit to the
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FIG. 6. Connected components of the
three major spontaneous activity types. A:
connected components of the silent neurons.
A dimensional stack image of the Prinz et al.
(2003) database is shown, with the same
stack ordering as in Fig. 4B. All nonblack
neurons are silent, and each color represents
a connected component. All the silent neu-
rons were in a single connected component,
so all pixels are either purple or black. Note
that the connected-components algorithm
was run on the full eight-dimensional grid of
models, so that groups of neurons that appear
unconnected in the dimensional stack image
can still be connected in eight dimensions. B:
connected components of the tonic neurons.
A dimensional stack image of the Prinz et al.
(2003) database is shown with the same stack
ordering as in A. All nonblack neurons are
tonic, and each color represents a connected
component. Eighty-seven (87) connected
components were found, but 99.96% of the
tonic neurons were in the largest component
(purple). Inset: some of the models that were
not in the largest component. C: connected
components of the bursting neurons. A di-
mensional stack image of the Prinz et al.
(2003) database is shown, with the same
stack ordering as in A. All nonblack neurons
are bursting, and each color represents a
connected component. Thirty (30) connected
components were found, but 99.99% of the
bursting neurons were in the largest compo-
nent (purple). D: connected components of
the bursting neurons that have 6–10 maxima
per burst (MPB). A dimensional stack image
of the Prinz et al. (2003) database is shown,
with the same stack ordering as in A. All
nonblack neurons are bursting, with between
six and ten maxima per burst, and each color
represents a connected component. There are
451 connected components, but 99.33% of
models in this class were in the largest com-
ponent (purple).
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bursting models. We constructed a classifier using the silent
and tonic hyperplanes and classifying a model as bursting if it
was on the negative side of the tonic hyperplane and on the
negative side of the silent hyperplane (Fig. 8B, bottom). This
yielded a classifier with a success rate of 91.0%. Thus the
bursting neurons are well fit by two hyperplane boundaries
over the range of maximal conductances found in the database.

Combining the classifiers for silent/nonsilent, tonic/non-
tonic, and bursting/nonbursting together, we constructed a
three-way classifier to predict the activity type. This classifier
predicted a model as silent if it was on the positive side of the
silent/nonsilent hyperplane. If a model was on the negative side
of the silent/nonsilent hyperplane, it was predicted as tonic if it

was on the positive side of the tonic/nontonic hyperplane and
as bursting if on the negative side. This classifier achieved a
success rate of 91.7% (treating irregulars as “don’t cares”).
Thus the silent/nonsilent and tonic/nontonic hyperplanes pro-
vide a complete partitioning of the conductance space over the
ranges examined, and this partitioning is accurate for predict-
ing the activity type of models.

This description of the layout of activity type is consistent
with the view provided by the dimensional stack image (Fig.
8A). The bursting models seem to occupy a middle ground,
with the silent models on one side and the tonic models on the
other (arrows). This was confirmed by fitting a hyperplane to
the silent/tonic boundary, treating bursters as “don’t cares”
(using only the no-zero-conductances subset). This hyperplane
was able to divide the silent models and the tonic models
perfectly, achieving a success rate of 100%. Inspection of the
hyperplane showed that the boundary passed roughly through
the middle of the bursting models (data not shown). Further-
more, we found that there are no silent models that neighbor a
tonic model (again in the no-zero-conductances subset). Taken
together, these facts confirm that the bursters lie between the
silent and tonic models in this subset of the database.

As a further check, we also fit a three-class linear discrimi-
nant to the data, treating the irregulars as “don’t cares” (see
METHODS). This achieved a success rate of 91.2%, similar to the
91.7% rate achieved by the composite classifier in the preced-
ing text. Examining the boundaries determined by this classi-
fier, we found that its silent/burster boundary was very similar
to the silent/nonsilent boundary determined above (RMS rela-
tive difference of the orthogonal vector was 0.6%). The tonic/
burster boundary was also similar to the tonic/nontonic bound-
ary determined above (RMS relative difference of the orthog-
onal vector was 13.0%). Thus the three-class classifier and the
composite classifier provide very similar partitionings of the
conductance space.

As mentioned in the preceding text, the high-order conduc-
tances are the ones to which the behavior type is, in a sense,
most sensitive. Another way of gauging the sensitivity of
behavioral transitions to different conductances is by examin-
ing the different components of w for the hyperplane fit to that
transition. We wondered how well these two notions of “sen-
sitivity” would accord with one another. For the tonic/nontonic
boundary, the w vector is [0.19 �0.18 0.29 �0.09 �0.89 0.23
0.003 �0.02], where the order is [Na CaT CaS A KCa Kd h
leak] and where the maximal conductances are all normalized
to the range 0–1. Ordering the conductances by the absolute
values of their respective w components, the order is [KCa CaS
Kd Na CaT A leak h], which is roughly in accord with the
ordering provided by the stack order optimization (Fig. 8A).
We found, however, that the w vector for the silent/nonsilent
boundary did not agree very well with the stack order shown in
Fig. 8A. This is presumably because the silent models make up
only a small fraction of the models shown in Fig. 8A and thus
are not as important for the determination of the stack order.

D I S C U S S I O N

It is often assumed that a particular intrinsic property of a
neuron is due to the presence of a particular voltage-gated
conductance. For instance, postinhibitory rebound in a neuron
is sometimes said to be caused by the hyperpolarization-
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FIG. 7. Connected components of the irregular neurons. A: dimensional
stack image of the Prinz et al. (2003) database is shown with the same stack
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activated (gh) conductance. However, it is now generally rec-
ognized that different voltage-gated conductances can have
overlapping effects on the intrinsic properties of a neuron
(Gillessen and Alzheimer 1997; Goldman et al. 2001; Golo-
wasch et al. 2002; Harris-Warrick et al. 1995; MacLean et al.
2003, 2005; Magee 1998; Ngo-Anh et al. 2005; Prinz et al.
2003; Ramakers and Storm 2002; Vervaeke et al. 2006). For
instance, both gh and the fast transient potassium conductance
(gA) can contribute to postinhibitory rebound (Harris-Warrick
et al. 1995; MacLean et al. 2003, 2005). The fact that conduc-

tances have overlapping roles in producing intrinsic properties
means that understanding how the maximal conductances of a
neuron determine its intrinsic properties is much more difficult
than it would be if each conductance determined a single
intrinsic property. This question is made more interesting by
the recognition that even identified neurons do not have fixed
maximal conductances, either from animal to animal or within
an individual animal’s lifetime (Desai et al. 1999; Golowasch
et al. 1999; LeMasson et al. 1993; Liu et al. 1998; MacLean et
al. 2003; Schulz et al. 2006; Turrigiano et al. 1994). If neurons
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FIG. 8. Hyperplane fits to spontaneous activity
types. A: dimensional stack image showing sponta-
neous activity types but only showing models with
all nonzero conductances and without subdivision of
the bursting neurons by maxima per burst. Stack
order was chosen automatically using CBDR. Ar-
rows indicate places where the bursting models ap-
pear to lie between the tonic models and the silent
models (see text). B: hyperplane fits. Each row rep-
resents a spontaneous activity type. The column
labeled “truth” shows the models of the given behav-
ior type in green, and those of all other types in red.
The column labeled “fit” shows a hyperplane fit to
the given activity type (or a combination-of-hyper-
planes fit, in the last row). The models in white lie on
the positive side of the hyperplane, the models in
black lie on the negative side. A perfect fit would
look like the corresponding image in the truth col-
umn but with white substituted for green, and black
for red. The “overlay” column shows the true activity
type together with the fit (it is an overlay only in a
loose sense). In this image, a white pixel represents a
model with the given activity type that was correctly
fit, a black pixel represents a model not of the given
activity type that was again correctly fit, a green pixel
represents a model of the given activity type that was
incorrectly fit, and a red pixel represents a model not
of the given activity type that was incorrectly fit.
Thus a perfect fit would have an entirely black-and-
white overlay image, and colored pixels represent
errors of different types. The fit to the silent models
is a hyperplane fit, and achieves a balanced classifi-
cation rate (success rate) of 98.4%. The fit to the
tonic models is again a hyperplane fit, and achieves a
success rate of 89.3%. The third row shows a fit to
the bursters constructed from the silent and tonic
hyperplane fits (see text), which achieves a success
rate of 91.0%.
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regulate their maximal conductances to maintain particular
intrinsic properties (Marder and Prinz 2002; Turrigiano and
Nelson 2004), then understanding how the maximal conduc-
tances determine the intrinsic properties will provide insight
into which conductances must be co-regulated.

Understanding how the intrinsic properties of a neuron are
related to its maximal conductances is difficult, even in model
neurons, where in principle “everything is known” about the
system. Ideally, mathematical analysis of a model would pro-
vide closed-form mathematical expressions for model proper-
ties as a function of the maximal conductances. This would
then allow for insight into how these properties vary as a
function of the maximal conductances. However, most realistic
neuronal models are nonlinear, and deriving closed-form ex-
pressions for interesting model properties is difficult. This
means that visualization of such properties can be essential for
developing intuition about how the property varies as the
conductances vary. This paper is a preliminary effort at apply-
ing such methods to a model database in a high-dimensional
conductance space.

We applied the dimensional stacking technique to the prob-
lem of visualizing such a model database and used CBDR for
optimizing the stack order to bring out salient features of the
model space. We used these techniques to visualize the “lay-
out” of spontaneous activity type in this space. Dimensional
stacking complemented other techniques for understanding the
geometry of spontaneous activity type: connected-components
analysis and linear classification. Together, these methods
allowed us to conjecture that nearly all silent, tonic, and
bursting models are in a single connected component (each)
and that the silent-bursting and bursting-tonic boundary are
both approximately linear when attention is restricted to mod-
els with no zero conductances.

CBDR can reveal structure in the data that would not be
apparent otherwise (Fig. 4B). By examining which conduc-
tances are chosen as the high-order axes, it is possible to
determine which conductances have the greatest influence (in
some sense) on the quantity plotted. The method makes no
strong assumptions about what type of patterns are likely to be
present in the data, unlike such methods as principal-compo-
nents analysis and linear classifier analysis. Nonetheless, it can
be used in conjunction with these methods and can be used to
visualize the outputs of these methods (Fig. 8, see following
text).

Comparison with other visualization techniques

The visualization method presented here has many similar-
ities to established techniques. Our method is a variant of the
clutter-based dimension reordering technique (CBDR) (Peng
2005; Peng et al. 2004). This technique (as applied to dimen-
sional stacking) involves optimizing a measure of the useful-
ness of a dimensional stack image by changing the stack order.
The method seeks to minimize the clutter in an image, which
is a measure of how not-useful a dimensional stack image is.
The measure Peng et al. (2004) propose only works on binary
(black-and-white) images, however, and differs from our edg-
iness measure even when the latter is applied to binary images.
The idea of optimizing the stack order to produce a useful
visualization is similar to the idea of projection pursuit (Fried-
man 1987; Friedman and Tukey 1974). Projection pursuit (the

visualization technique, not the regression method) involves
projecting a swarm of points in n dimensions down to fewer
dimensions and then using some measure of the usefulness of
this projection to optimize the projection. The general idea of
visualizing a high-dimensional space via embedding of lower-
dimensional spaces is also used in the techniques of Mihalisin
and colleagues (Mihalisin et al. 1990), and in the Worlds within
Worlds approach (Feiner and Beshers 1990). All of the pre-
ceding methods are categorized as geometric methods by Keim
(2000), who also discusses a variety of other methods for
multidimensional visualization.

One way to view CBDR as applied to dimensional stack
images is as dimensional stacking plus projection pursuit.
Dimensional stacking is a linear projection of the n-dimen-
sional space to a two-dimensional one. Different stack orders
correspond to different projections. But the projections used in
dimensional stacking have a specific feature: they take a
uniformly spaced grid of points in n dimensions to a uniformly
spaced grid of points in two dimensions. Preservation of the
grid structure makes the edginess computation simple and fast,
and the fact that the set of stack orders is discrete and finite
makes the optimization problem simpler.

One advantage of dimensional stacking is that it allows all
the models in the database to be visualized simultaneously.
Alternative techniques, such as fixing all maximum conduc-
tances but three and then plotting the activity type as a function
of the three remaining conductances, force one to make choices
about what values of the other conductances to use, which
could give a misleading picture of the database as a whole.
Another technique would be to average over all the models
corresponding to a given choice of the plotted conductance.
That is, instead of picking a single value for the unplotted
conductances, average over all possible values, perhaps using
a weighted average of the colors chosen to represent each
activity type. Again, however, the averaging technique does
not allow the inspection of all models simultaneously. Further-
more, averaging necessarily obscures any patterns present in
the averaged-over dimensions, which dimensional stacking
preserves. This could be especially misleading when examin-
ing categorical variables with highly nonlinear boundaries
(Golowasch et al. 2002).

A variant of the averaging technique was used by Goldman
et al. (2001) in an analysis of a five-dimensional conductance
space (see Relation to previous work). Those authors used
multicolored symbols at each point to indicate the fraction of
models at that point that were of each activity type. Although
this technique is very useful, one must still specify in advance
which variables will be placed on the axes, and which will not,
and poor choices will result in less useful visualizations.
(Those authors chose which axes to plot based on a separating-
hyperplane analysis.) Using our technique, these sorts of
choices are made automatically, and thus a useful visualization
can be generated before one attempts to mathematically fit
whatever structure may be present in the data.

Relation to bifurcation theory

One approach to understanding how the dynamics of a
neuronal model change as the maximal conductances (or other
parameters) change is bifurcation theory (Guckenheimer and
Holmes 1983; Hirsch et al. 2004; Strogatz 1994). Bifurcation
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theory allows one to find manifolds (curved surfaces) in the
conductance space at which the system behavior changes
qualitatively. For bifurcations of fixed points (essentially, silent
models), in models of neurons, these manifolds can usually be
described analytically in terms of the roots of a certain char-
acteristic polynomial (Guckenheimer et al. 1993, 1997). Bifur-
cations of periodic orbits (e.g., from tonic to bursting behavior)
must typically be computed numerically, and methods for
doing so are an active area of research (Govaerts et al. 2005;
Guckenheimer and Meloon 2000). However, an analysis of
fixed-point bifurcations for a system under consideration can
sometimes give indirect information about non-fixed-point
bifurcations (Guckenheimer et al. 2005).

The approach taken here is not intended as a replacement for
bifurcation theory. Rather it is intended to be used after one has
generated a database that samples the parameter space on a
coarsely sampled grid. One motivation for generating a data-
base of this sort is that one wants to find models with particular
properties but wants to put off decisions about what exactly
those properties will be. With such a database in hand, CBDR
is a fast method for seeing how model properties change as
parameters are varied. It does not allow one to determine the
locations of qualitative behavior changes with the precision
offered by bifurcation theory. Another disadvantage of the
database method is that the amount of computation required
scales exponentially in the number of parameters. The database
used here did not include a characterization of multistability
that may be present in the models, something that bifurcation
analysis handles quite readily. One advantage of the database
method, however, is that it allows one to examine how any
computable function of the model behavior varies with the
parameters, not only the qualitative behavior type. (Although
bifurcation analysis can provide quantitative information
about, for instance, the frequency of tonic firing near a bifur-
cation.) Another advantage of the database method is its
simplicity, since it requires comparatively little mathematical
sophistication. Thus it is arguably better suited to the working
biologist who wants to examine the range of behaviors possible
in a complex model in a situation where computational re-
sources are inexpensive and plentiful.

Generalizations of the techniques

The techniques used here can be used on a wide variety of
models. In this work, the free parameters that we examined
were all maximal conductances, but this need not be so. Any
set of parameters could be used to construct and optimize a
dimensional stack image, including half-maximal activation
voltages, time constants, etc. Similarly, our work examined a
single-compartment model, but a multicompartmental model
could also be subjected to dimensional stacking. There will in
general be more free parameters in a multi-compartment model
than in a single-compartment model, and so choices will have
to be made about which parameters to do the dimensional stack
on. In multicompartment models, however, the number of
parameters usually scales more slowly than the number of
compartments. This is because large groups of compartments
typically have identical conductances. For instance, all axonal
compartments or all the dendrites of a given class might have
identical conductance densities, thus making the number of

parameters considerably less than the number of compartments
(Contreras et al. 1997; Traub et al. 1994, 2005).

In this work, we have focused on understanding the mapping
from conductances to discrete variables. In Fig. 4, the quantity
mapped is a combination category variable (activity type) and
integer (number of maxima per burst). However, CBDR could
easily be extended to deal with continuous-valued dependent
variables. Such quantities could be represented as grayscale
values, for instance, and the stack-order optimization could be
based on minimizing squared differences between neighboring
pixels. Such an analysis would provide a useful alternative to
the parameter explorations often performed on conductance-
based models (Hill et al. 2001, 2002; Olsen et al. 1995). Such
analyses usually involve varying one parameter at a time
around a central canonical model and examining how model
properties change as a function of this. CBDR would enable
the examination of simultaneous changes to multiple parame-
ters and would allow for a determination of what parameters
affected the model properties most strongly.

Connected components

Knowing the number of connected components for a given
behavior type is interesting for at least two reasons. 1) If there
are multiple components for a given behavior, they may
correspond to distinct mechanisms for generating the behavior.
2) If the system is subject to homeostatic regulation (Liu et al.
1998), it would presumably be easier to perform regulation
within a connected component, whereas “jumping” from one
connected component to another might be more difficult. Our
discovery that nearly all silent, tonic, and bursting models in
the database occupy a single connected component (each) is
thus reassuring. In addition to finding that silent, tonic, and
bursting models each occupy a single connected component,
we found that, in a subset of the database, their borders are
fairly simple, being well approximated by hyperplanes. This
reinforces the results of the connected-components analysis
and underscores the relative simplicity of the boundaries be-
tween activity types, at least over the ranges we examined.

It is important, however, to recognize what the connected-
ness results are not. We have determined the connectedness of
models on a uniform grid in the conductance space. We have
reason to believe that this grid samples the underlying contin-
uous space reasonably well—Prinz et al. (2003) found that
90% of models sampled at random within the continuous space
had the same activity type as the nearest grid point. But we
have not proved anything in a mathematical sense about the
connectedness of these regions in the underlying continuous
space. It is possible, indeed likely, that some neighboring
points on the grid that share the same activity type actually
have regions of another activity type along the line segment
connecting them. Conversely, some grid points that are not
connected to each other on the grid could be connected in the
underlying continuous space and only appear disconnected
because we have not sampled finely enough. But given that the
grid seems to sample the space reasonably well (see preceding
text; see also Prinz et al. 2003), it seems likely that most of the
models in the three main activity types are connected to one
another in the continuous conductance space. It is still possible
that there are regions of the space that contain many (perhaps
infinitely many) small disconnected islands of a given activity
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type, but it nonetheless seems that most of the conductance
space is not like this.

Another important caveat is that the database only contains
information about a limited range of maximal conductances.
Although the ranges were chosen to be roughly consistent with
the biology, the results of the connected-components analysis
and the hyperplane-fitting analysis must be interpreted with
this caveat in mind. It is possible that there are separate
“islands” of particular activity types that are outside the ranges
scanned by the database. Similarly, we found that the bound-
aries between activity types are only linear over a particular
range of conductances. We left out models with zero conduc-
tances when doing hyperplane fits precisely because hyper-
planes provided poorer fits when the zero-conductance models
were included. This indicates that the boundaries between
activity types display nonnegligible curvature as the maximal
conductances approach zero. However, even excluding the
zero-conductance models, the maximal conductances scanned
cover a fivefold range and the fact that the boundaries are
well-approximated by hyperplanes over this range is note-
worthy.

Relation to previous work

The results reported here extend those of Goldman et al.
(2001). In that work, the authors showed that there were
approximate hyperplane boundaries between silent, tonic, and
bursting model neurons, in a model family similar to the one
we used. They did this in a five-dimensional conductance space
in which g�Na, g�CaT, g�A, g�KCa, and g�Kd were free to vary. (g�CaS
was set to 80% of g�CaT, g� leak was fixed, and g�h was set to 0).
Those authors also found that hyperplanes were able to effec-
tively delineate different spontaneous activity types. This work
extends that analysis to more dimensions and applies the
CBDR for the visualization of this higher-dimensional model
space.

General conclusions

In this work, we have used CBDR for gaining insight into
how the properties of model neurons vary as their parameters
are varied. We found this tool to be useful in the context of a
database of model neurons that sampled an eight-dimensional
space of maximal conductances. Furthermore, we found that it
provided a way of visualizing the “answers” given by such
techniques as connected-components analysis and linear clas-
sification. Because the methods described here are easy to
implement, they may be ideally suited for neurophysiologists
wishing to gain intuitions about models constructed to capture
the dynamics of specific neuronal types and thus may be useful
adjuncts to other mathematical approaches to understanding
the relationship between model parameters and the resulting
neuronal dynamics.
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