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ABSTRACT

Medical imaging is shifting from film to electronic images.
The STARE  (structured analysis of the retina) system is a
sophisticated image management system that will automatically
diagnose images, compare images, measure key features in
images, annotate image contents, and search for images similar
in content. We concentrate on automated diagnosis. The images
are annotated by segmentation of objects of interest,
classification of the extracted objects, and reasoning about the
image contents. The inferencing is accomplished with Bayesian
networks that learn from image examples of each disease.

This effort at image understanding in fundus images
anticipates the future use of medical images. As these
capabilities mature, we expect that ophthalmologists and
physicians in other fields that rely in images will use a system
like STARE to reduce repetitive work, to provide assistance to
physicians in difficult diagnoses or with unfamiliar diseases, and
to manage images in large image databases.

1. INTRODUCTION

1.1. Electronic vs. photographic film images

Ophthalmologists rely heavily on images of the eye in
patient care and research. The most common method of
acquisition and storage of color and fluorescein angiogram
images of the retina and optic nerve is film-based. Today,
inexpensive computers are able to handle electronic images large
enough to contain important details. The user can manipulate
electronic images in ways that are superior to film-based images.
For example, the user will be able to obtain automated diagnosis
from images, compare sequential images, measure important
structures in an image, and aggregate images similar in content.
The physician can thereby receive decision support, be relieved
of repetitive actions, and routinely obtain useful measurements
currently too difficult or arduous to obtain.

1.2. Image understanding and scene analysis

Image understanding in medicine is a complicated job
because many steps (image preprocessing, segmentation,
classification, registration, recognition of objects form arbitrary
viewpoints, inferencing) are involved. This process requires
comprehensive knowledge in many disciplines, such as signal
processing, pattern recognition, database management, artificial
neural networks, expert systems, and medical practice. The

STARE (structured analysis of the retina) system is designed to
achieve automated diagnosis from images, find changes in
objects in sequential images, make measurements of key
objects, and search large image databases based on image
content [1,2]. This manuscript concentrates on the automated
diagnosis concept of the STARE system.

1.2.1. Medical applications

Due to the complexity of image understanding in medical
images, many computer applications in medical imaging have
been concerned with smaller tasks, such as image enhancement,
analysis tailored to detect a specific object, or completion of a
particular goal. Nevertheless, the integration of the steps
necessary for image understanding in medical images is
beginning to be addressed. [1,3]

1.2.2. Ophthalmologic use

The retina is a forward extension of the brain and its blood
vessels. Images of the retina tell us about retinal, ophthalmic,
and even systemic diseases. The ophthalmologist uses images to
aid in diagnoses, to make measurements, to look for change in
lesions or severity of disease, and as a medical record. For
example, while screening images of the ocular fundus, the
physician may suspect the presence of diabetes from a pattern of
hemorrhages, exudates, (yellow deposits in the retina), and
cotton-wool spots (microscopic loss of circulation).

It is a natural human desire to find ways to avoid repetitive
or routine work and be left with interesting and challenging
work. Also it is advantageous to make use of outside expertise
at the moment it is needed. There is a need for an imaging
system to provide physician assistance at any time and to relieve
the physician of drudgery or repetitive work.

1.4. Computer vision system

The STARE computer vision system seeks to reproduce the
capabilities of the human expert, who can extract useful
information and make decisions about diagnosis or treatment
from medical images, even if the images are degraded. The
STARE system extracts objects of interest (lesions and
anatomical structures) from the rest of the image of the ocular
fundus, identifies and localizes the objects, and infers about the
presence and location of abnormalities to make diagnoses or
look for change in sequential images. This was the original
paradigm conceived for the STARE project. Successful methods
of image understanding in other applications do not necessarily
work with medical images. For example, model-based object
recognition gives superior performance in aerial reconnaissance,



but the process is not suitable for segmenting some objects in
medical images, because of the wide variety of presentations of
model objects, such as retinal exudates.

2. STEPS IN STARE

2.1. Image acquisition

The images of the ocular fundus can be acquired with a
fundus camera or a scanning laser ophthalmoscope. Soon,
electronic detectors will have adequate spatial, intensity, and
color resolution to substitute for film. We currently transfer
photographs to digital medium with film scanners. Color and
monochromatic images are quantized to 12 bits per color plane
and down-sampled to 8 bits without losing relevant information.
Most processing in the STARE system is done on images 8202 or
4102, though resolution up to 21602 is possible. The angle of
view can be 10° for detail to 60° for panorama. The complex
image analysis is made easier by a single viewport, shadowless
coaxial illumination, and a nearly 2-dimensional scene with
minimal occlusion.

2.2. Segmentation

2.2.1. Preprocessing

In our current setup, we do not need to do preprocessing
due to the good quality of the acquired images. In the future we
can investigate preprocessing to rectify distortions due to media
decay (e.g. astigmatic blur, defocusing, color shift, uneven
magnification, scratches, dust).

2.2.2. Segmentation algorithms in general

Objects of interest may be separated from the background
by seeking the object boundary or by using characteristics of the
objects, such as texture, color, size, and shape. If you know what
you are looking for, you will always find it. Most successful, if it
can be done, is to use template-matching algorithms.

2.2.3. Segmentation of images of the fundus oculi

Type of objects: The objects of interest in the ocular fundus
are lesions and abnormalities of anatomical structures. All the
objects can be organized into three superclasses (1-3) of  objects
and two specific (4,5) objects: 1) curvilinear objects (including
blood vessels), 2) blobs brighter than blood vessels, 3) blobs
darker than blood vessels, 4) the optic nerve, and 5) the fovea
(central vision spot).

Rotating matched filter for blood vessel-like objects: We
reduced a modeled profile of a blood vessel to the mathematical
representation of a Gaussian curve. Because blood vessels are
darker than the background, we make the curve negative. In the

horizontal orientation, ( ) ( )K x y x y L, exp= − − =2 2 2σ for

where ( )K x y,  is the transect profile of the blood vessel, L is the

length of the segment, and σ is the average blood vessel width
[4]. The green plane is convolved with this template in 12
orientations over 180° with the output at each point being the
maximum for the 12 orientations (figure1). This technique works
in images with distorted blood vessels or confounding lesions
surrounding or lying under the blood vessels. Thresholding
yields blood vessels and other curvilinear objects, such as the
edges of large objects.

Blob detectors for bright and dark lesions: The intensity
of blood vessels is the most stable measurement. We
compensate for image exposure by normalizing to the intensity
of blood vessels. Bright objects are found in the green plane
remapped between 1.2 times the mean blood vessel intensity
and 255. We convolve a flat circular bright object template at
multiple scales for potential bright objects. Similarly, dark
objects are extracted from images scaled between zero and 1.2
times blood vessel intensity. The borders of the gross blobs are
refined by a histogram-thresholding technique to match the
object border.

Optic nerve: We use three properties of the optic nerve in
order to locate it: 1) the optic nerve normally appears as a bright
disk approximately 1500µm in diameter, 2) large vertical blood
vessels enter the nerve from above and below, and 3) blood
vessels in the retina tend to converge at the nerve. The nerve
location algorithm forms three images, each indicating the
strength of one of the three properties, and computes a weighted
average of the three images. The position of the pixel of
maximum intensity in the average image indicates the position
of the optic nerve. Averaging ameliorates the impact of
confounding factors that occasionally make one of the properties
unreliable [5].

Fovea: The fovea can be identified in the blue plane
image. The fovea is located 4.5mm temporal to the optic nerve
and is marked by yellow pigment in the retina, which shows as
a dark spot in the blue plane image.

2.3. Classification and location of objects of interest

2.3.1. Classifier components

The input vector was comprised of a feature set of
mathematical properties of objects and object measurements
meaningful to ophthalmologists tailored to the superclass of
objects. The original feature set was reduced by genetic
algorithms [6]. We tested linear discriminant function, quadratic
discriminant function, logit classifier, and back propagation
artificial neural networks. For each superclass of objects, we
chose a classifier that balanced accuracy and computation cost.

Figure 1: Output of blood vessel filter



The learning was supervised. The accuracy was tested with cross
validation.

2.3.2. Curvilinear objects

We divided the curvilinear objects into blood vessel
segments and non-blood vessels. The input vector for each
curvilinear object was the mean color of the center line of the
object in the original image, the standard deviation of the color
of the center line in the original image, the mean intensity of the
center line for an object in the blood-vessel filter image, the
length of the object, turns per object length, and the relative
brightness of the original image on either side of the object. This
last feature, the Duda Road Operator, had the highest utility [7].
A linear classifier has been sufficiently accurate, yielding
accuracy of 84% compared to the human expert.

2.3.3. Bright objects

The list of bright objects includes exudates, cotton-wool
spots, drusen, photocoagulation scars, subretinal fibrosis, and
false objects. Useful features included object color, border color,
texture measures, compactness, area, edge gradient, and turns
per length of the border [8]. For color and brightness measures,
the image was normalize for image exposure by average
background color obtained after removing all objects. The logit
classifier was best, with an accuracy of 89% (figure 2,3) [9].

2.3.4. Dark objects

The initial set of dark objects included hemorrhages, retinal
blood vessels, pigment, and false objects. With the same
features, the logit classifier provides accuracy of 78%.

2.3.5. Fundus coordinate system

Ophthalmologists tend to use clock hours centered on the
fovea (center of macular region) and the distance from the fovea
to describe positions on drawings or images of the retina. They
also refer to regions and quadrants. From these concepts, we
devised a fundus coordinate system, based on the polar
coordinate system, that discretizes the retina into 11 regions
meaningful to ophthalmologists and useful for inferencing
(figure 4).

2.3.6 Annotated image

The objects are valued in severity in each of the 11 regions.
For example, in the superior temporal perimacular region,

exudates can be valued as absent, low percentage of region,
high percentage of region. An image thus annotated can be used
for inferencing about diagnosis.

2.4. Inferencing

2.4.1 Diagnosis as a large classification problem

Depending on how comprehensive the list of diagnoses, the
number of ophthalmologic diagnoses can be several hundred.
Likewise the set of features and their values can be several
hundred. Such large classification tasks become tractable if
compromises and assumptions are made. The computational
cost of obtaining the values of a full set of image features is
large. Sequential ascertainment of data is profitable if the utility
of each feature obtained is high [10,11]. Artificial neural
networks do not require the features to be independent, but
sequential data collection is not practical, and the reasoning
steps are not available. An expert system can use sequential
input of features based on utility and provides an audit trail.
The data should be independent. Acquiring expert knowledge
and improving system performance are arduous. Changing the
classification or feature set requires repetition of this time-
consuming and skill-intensive work. An expert system based on
learning Bayesian networks reduces the need for such skilled
labor, produces an audit trail of reasoning, and can incorporate
beliefs or frequency analysis from the literature [11].

2.4.2 Learning Bayesian probabilistic expert system

A pilot inferencing system for fundus images in the STARE
system has been developed. We present the format for the
inferencing system as it is designed to be completed.

Knowledge engineering: The evolution of the expert
system involves selecting a set of diagnoses and features,
defining a causal probabilistic structure over the set of
diagnoses and features, quantizing the features into discrete
values, assembling a representative set of images, annotating
the images, teaching the network, filling out the feature set with
beliefs and frequency values, improving performance, and
validating the results of the process.

The initial expert system is directed at a set of 43 vascular
diseases of the retina. Among the types of diseases are diabetic
retinopathy, branch and central retinal artery occlusion, branch
and central retinal vein occlusion, arteriovenous anomalies,
Coat’s disease, sickle retinopathy, and hyperviscosity

        

Figure 2: Cotton-wool spots, hemorrhage Figure 3: Objects segmented and identified Figure 4: Fundus coordinate system



syndromes. The values of each feature
(image manifestation) is correlated to
each disease with conditional
probabilities, p M Di j[ | ] . Such features

include retinal exudates, cotton-wool
spots, retinal hemorrhages,
microaneurysms, venous caliber, arterial
caliber, tortuosity, etc. An example of
mutually exclusive and exhaustive
values for a feature is absent, low
severity, or high severity for cotton-wool
spots in selected regions of the retina.

Structure: We model the decisions
with influence diagrams, which are
directed acyclic graphs containing nodes
representing diagnoses or disease
manifestations and arcs representing
probabilistic dependence between the
nodes (figure 5) [12].

Knowledge acquisition: We insert
the relative incidence of each disease in
four age groups, 0 to 6 months, 6 months
to 2 years, 2 years to 60 years, greater
than 60 years. We use annotated
examples of each disease to propagate
probabilities in the Bayesian network. The computational cost of
obtaining each manifestation from an image is entered to help in
deriving the utility of the next best feature. If necessary,
probabilities are adjusted to optimize classification accuracy.

Embedded expert system: Hypotheticodeductive reasoning
is applied. For any disease group, the values of specified features
are always presented to the expert system. Based on the ranking
of the diagnoses with the current set of features entered, the
feature with the maximum utility from the remaining set is used
to update the disease ranking. When the probability of a
diagnosis reaches threshold probability, the diagnosis is
accepted.

3. DISCUSSION

We consider this system as a pioneering effort for an
imaging understanding system. We feel that in coming decades,
capabilities being addressed in this system will be mature
enough to become an integral part of the practice of medicine in
disciplines that rely on images.

4. REFERENCES

[1] M.H Goldbaum, N.P Katz, S. Chaudhuri, M. Nelson, “Image
Understanding for Automated Retinal Diagnosis,” Proceedings:
The Thirteenth Annual Symposium on Computer Applications in
Medical Care, pp. 756-760, 1989.
[2] A. Gupta, S. Moezzi, A. Taylor, S. Chatterjee, R. Jain, S.
Burgess, M. Goldbaum, “Content-Based Retrieval of
Ophthalmological Images,” IEEE International Conference on
Image Processing, vol. ICIP-96, 1996.
[3] W.E.L. Grimson, “Medical Applications of Image
Understanding,” IEEE Expert, vol.10, pp. 18-28, 1995.

[4] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, M.
Goldbaum, “Detection of Blood Vessels in Retinal Images
Using Two-Dimensional Matched Filters,” IEEE Transactions
on Medical Imaging, vol. 8, pp. 263-269, 1989.
[5] S. Chaudhuri, S, Chatterjee, N. Katz, M. Goldbaum,
“Automatic Detection of the Optic Nerve in Retinal Images”
Proceedings IEEE International Conference on Image
Processing, Singapore, vol. 1, pp. 1-5, 1989.
[6] D.E. Goldberg, “Genetic Algorithms in Search,
Optimization, and Machine Learning,” Addison Wesley, 1989.
[7] M. Fischler, J. Tenenbaum, H. Wolf, “Detection of Roads
and Linear Structures in Low Resolution Aerial Imagery Using
a Multisource Knowledge Integration Technique,” Computer
Graphics and Image Processing, Vol 15, 201-223, 1981.
[8] M.H. Goldbaum, B.L Côté, R.F. Garcia, W.E. Hart, P. Kube,
M. Nelson, “Computer Detection and Classification of Lesions
Found in Diabetic Retinopathy,” Invest Ophthalmol Vis Sci, vol.
33, p. 1082, 1992.
[9] J.S. Cramer, “The Logit Model: An Introduction for
Economists,” Edward Arnold, 1991.
[10] E. Horvitz, J. Breese, M. Henrion, “Decision Theory in
Expert Systems and Artificial Intelligence,” J Approximate
Reasoning, Vol. 2, pp. 247-302, 1988.
[11] D. Heckerman, “A Tutorial on Learning with Bayesian
Networks,” Technical Report MSR-TR-95-06, Microsoft
Research Advanced Technology Division, Microsoft
Corporation, 1996.
[12] R. Howard, J. Matheson, “Influence Diagrams,” in R.
Howard, J. Matheson, editors, “Readings on the Principles and
Applications of Decision Analysis, vol. II, pp. 721-726,
Strategic Decisions Group, Menlo Park, CA, 1981.

Diseases
Age

Angioma, capillary

A-V Shunt, visible

MacroAneurysm

Telangiectasis

Arteriovenous Xing

Specular art reflex

Silver wire arteries

Copper wire

AA diameter & tortuosity

Vein diameter

Retinovit NV, obs or FA

Emboli

Yellow vessel

Ghost vessels

Grape clusters

Blot and/or flame hem

Blot and/or flame density

Microaneurysm/dot hem

Salmon patch

Leakage, retinal, not CME

Exudative ret det

Optic nerve swelling

Optic nerve collaterals

Sunburst sign

CME, visibly or by FA

Stellate macupolathy

Convection streaming

Pooling not streaming

Nonpattern blocked fluor

Patterned blocked fluor

Nonperfusion hypofluoresc

Leakage ant to retina

SRNV on FA or visible

Inner ret infarct, acute

Cotton-wool spots

Retinal exudates

Deep retinal infarct

Glistening spots, extravas

Diabetes, elev blood sugar

Hematocrit

WBC > 100,000

Macroglobulinemia

Hypergammaglobulinemia

Retinal nonperfusion

Central cicatrix

Dragged disk

Dragged fovea

Peripheral cicatrix

Tractional ret detach

Straightened arcades

Gender

Birth weight

Race

Sickle hemoglobinopathy

Hx/FH incontinentia pigmenti

Hx intravenous abuse

Bilaterality

Hx myxoma

Hx radiation Rx

Hypertension

Hx murmur

Skin lesions Inc Pig

Figure 5: Influence diagram, manifestations in vascular diseases


