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Most neurons have large numbers of voltage- and time-dependent currents that contribute to their electrical firing patterns. Because
these currents are nonlinear, it can be difficult to determine the role each current plays in determining how a neuron fires. The lateral
pyloric (LP) neuron of the stomatogastric ganglion of decapod crustaceans has been studied extensively biophysically. We constructed
�600,000 versions of a four-compartment model of the LP neuron and distributed 11 different currents into the compartments. From
these, we selected �1300 models that match well the electrophysiological properties of the biological neuron. Interestingly, correlations
that were seen in the expression of channel mRNA in biological studies were not found across the �1300 admissible LP neuron models,
suggesting that the electrical phenotype does not require these correlations. We used cubic fits of the function from maximal conduc-
tances to a series of electrophysiological properties to ask which conductances predominantly influence input conductance, resting
membrane potential, resting spike rate, phasing of activity in response to rhythmic inhibition, and several other properties. In all cases,
multiple conductances contribute to the measured property, and the combinations of currents that strongly influence each property
differ. These methods can be used to understand how multiple currents in any candidate neuron interact to determine the cell’s electro-
physiological behavior.

Introduction
The mixture of voltage- and calcium-dependent channels and
their distribution across the surface of a neuron collectively de-
termine the electrophysiological properties of the neuron, in-
cluding its resting membrane potential, input impedance, firing
rate in response to current, and the extent to which it exhibits
neuronal behaviors such as bursting, plateauing, and postinhibi-
tory rebound (Marder, 1998). For a neuronal network to func-
tion properly, the neurons in that network must exhibit network-
appropriate behaviors.

Recent work has shown that although a neuron may behave
similarly from animal to animal, the densities of voltage-gated
channels can vary severalfold from animal to animal (Golowasch
and Marder, 1992a; Golowasch et al., 2002; MacLean et al., 2005;
Schulz et al., 2006, 2007). How, then, is reliable neuronal behav-
ior maintained in the face of this variability? One possible answer
is that although conductances are variable, they are variable in a
correlated manner, and these correlations preserve the function
of the neuron. This idea was given additional plausibility by the
discovery that many channels are expressed in a correlated man-
ner, at least at the level of mRNA (Schulz et al., 2006, 2007).

We sought to examine the hypothesis that correlations be-
tween conductances are required to conserve the electrophysio-

logical function of neurons. We generated a large population of
models of a single identified neuron, the lateral pyloric (LP) neu-
ron, found in the stomatogastric ganglion (STG) of the crab Can-
cer borealis. We generated this population by choosing model
parameters at random and filtering out models that did not be-
have appropriately. We then measured a number of electrophys-
iological properties in the resulting models and looked for corre-
lations between model parameters that were induced by our
constraints on electrophysiological properties.

Historically, a number of different approaches have been used
to assess the role of a given channel in a given electrophysiological
property of a neuron. One such approach is pharmacological
blockade (Hille, 2001). Although this can be done successfully, it
presupposes both that a given drug’s cellular targets are known
and that it is selective. Often, neither of these conditions is met.
More recently, many have studied the effects of genetically alter-
ing or deleting currents on neuronal dynamics (Raman et al.,
1997; Khaliq et al., 2003; MacLean et al., 2003; Swensen and Bean,
2005). Again, although these manipulations are often informa-
tive, their interpretation is complicated by compensatory mech-
anisms that occur during development. A third method is to use
the dynamic clamp to add or subtract a current from a neuron
(Prinz et al., 2004a).

The most common computational technique used to assess
the role of a given parameter on the behavior of a neuron is
sensitivity analysis (Butera et al., 1999; Hill et al., 2001, 2002;
Jezzini et al., 2004). Here, we used a different approach to under-
stand the extent to which combinations of neuronal conduc-
tances influence a number of different neuronal behaviors and
compare this approach to sensitivity analysis.
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Materials and Methods
Electrophysiology
Experiments were performed essentially as described previously (Goail-
lard et al., 2004). All preparations had two intact superior esophageal
nerves and included the esophageal ganglion, but they had from zero to
two intact inferior esophageal nerves.

Modeling voltage-gated currents
The LP neuron models contained 10 voltage- and calcium-gated cur-
rents. These were the delayed-rectifier potassium current (IKd); the tran-
sient potassium current (IA); the calcium current (ICa); the calcium-
activated potassium current (IKCa); the hyperpolarization-activated
inward current (Ih); the proctolin-activated current (Ipr), a mixed inward
current that is activated by several neuromodulators, including proctolin
(Swensen and Marder, 2000); the fast sodium current (INa); the axonal
delayed-rectifier potassium current (IKda); and the axonal transient po-
tassium current (IAa). The IA current was modeled as the sum of a fast and
a slow component (IAf and IAs), but the maximal conductances of these
currents were held in a fixed ratio (0.885:1), because they model a single
voltage-gated current as characterized physiologically. The model con-
tained two leak currents, Ileak (the somatoneuritic leak) and Ileak,ax (the
axonal leak conductance), both described by the usual formalism but
with different maximal conductances.

The mathematical description of most of these currents (IKd, IA, ICa,
IKCa, Ih, and Ipr) was based on descriptions in previous work (Buchholtz
et al., 1992; Golowasch and Marder, 1992b), but with several revisions. In
all cases, we tuned the half-activation voltages and kinetics of these cur-
rents to provide good fits to voltage-clamp data (Golowasch and Marder,
1992a; Turrigiano et al., 1995; Schulz et al., 2006). The axonal currents
(INa, IKda, and IAa) were based on those in the Connor-Stevens model of
crab walking leg axon (Connor et al., 1977), but the half-activation and
kinetic parameters of these currents were tuned to have the desired
current-clamp behavior in the baseline model (see below, Construction
of baseline model). Finally, there were three synaptic currents in the final
LP neuron models, representing synaptic inputs from other members of
the pyloric network: IsynAB, IsynPD, and IsynPY. They are described below.

All model currents except ICa were modeled as ohmic currents, de-
scribed by the following equation:

I � g� � w � �v � E�, (1)

where g� is the maximal conductance, w is the product of the gating
variables raised to the appropriate powers, v is the membrane potential,
and E is the reversal potential. The reversal potential of each current in
the model depended on the permeant ions. The reversal potential was
�55 mV for sodium currents, �80 mV for potassium currents (includ-
ing IsynPD), �25 mV for Ih, �10 mV for Ipr, and �70 mV for IsynAB and
IsynPY.

The calcium current was modeled using the Goldman-Hodgkin-Katz
equation, and was given by the following:

ICa � P� CadCa, (2)

where

dCa � mCa
3hCaNAqezCa�[Ca2�]i

��

exp���� � 1
� �Ca2��o

�

exp��� � 1�,

(3)

� �
zCaqe

kT
v, (4)

P� Ca is the maximal calcium permeability, mCa is the calcium channel
activation, hCa is the calcium channel inactivation, NA is Avogadro’s
number (6.022 � 10 23 mol �1), qe is the elementary charge (1.602 �
10 �7 pC), zCa is the valence of a calcium ion (�2), [Ca 2�]i is the internal
calcium concentration, [Ca 2�]o is the external calcium concentration
(13 mM), k is Boltzmann’s constant (1.381 � 10 �23 J/K), and T is the
temperature in Kelvin (283.15°K 	 10°C).

In the model, we assumed that ICa and IKCa channels were clustered

together, and each cluster was associated with a calcium microdomain
(Marrion and Tavalin, 1998; Fakler and Adelman, 2008). We know of no
evidence either for or against this hypothesis in the STG, but it seems to
be common in other systems (Fakler and Adelman, 2008). The maximal
permeability of ICa was related to the per-cluster maximum permeability
by the following:

P� Ca � �clust � P� Ca
1 , (5)

and the maximal conductance of IKCa was related to the per-cluster max-
imal conductance by the following:

g�KCa � �clust � g�KCa
1 , (6)

where �clust is the density of clusters (in clusters/nF), P� Ca
1 is the per-cluster

maximal permeability of ICa, and g�KCa
1 is the per-cluster maximal con-

ductance of IKCa. We simulated the accumulation of Ca 2� in an (aver-
age) small volume associated with each microdomain. The equation gov-
erning intracellular calcium was as follows:

d

dt
�Ca2��i �

�Ca2��
 � �Ca2��i

�Ca
�

1

zCaqeNAVCa
P� Ca

1 dCa, (7)

where [Ca 2�]
 is the steady-state calcium concentration in the absence
of calcium current (20 �m), �Ca is the time constant of calcium buffering
(70.4 ms), and VCa is the volume associated with each microdomain (6.49
�m 3).

In generating our population of models, we picked values of P� Ca and
g�KCa at random and solved Equations 5 and 6 for �clust and g�KCa

1 , assum-
ing a fixed P� Ca

1 of 1.1675 � 10 �3 �m 3/ms. One consequence of this
scheme is that an increase in P� Ca alone will not change the dynamics of
calcium accumulation (because the calcium accumulation is done on a
per-microdomain basis, and increasing P� Ca increases the density of mi-
crodomains but not the dynamics within a microdomain) and therefore
will not change the dynamics of IKCa. Another approach would be to
make �clust, P� Ca

1 , and g�KCa
1 all be independently tunable parameters, but

this seemed overly complex given the experimental uncertainties about
the mechanics of calcium accumulation in this system.

Equations for the steady-state (in)activation and time constants of
each voltage- and calcium-gated current are given in Table 1.

Modeling synaptic currents
During the pyloric rhythm, the LP neuron receives inhibition from three
main sources: the anterior burster (AB) neuron, the pyloric dilator (PD)
neurons, and the pyloric (PY) neurons. In the model, we approximated
these inputs by fixed rhythmic patterns of synaptic conductance.

The synapses from AB and PY to LP are glutamatergic, predominately
chloride-mediated, and rapid (Hartline and Gassie, 1979; Eisen and
Marder, 1982; Marder, 1984). The synapse from PD to LP, in contrast, is
cholinergic, potassium-mediated, and slow (Eisen and Marder, 1982;
Marder and Eisen, 1984). To reflect this, the model AB and PY synapses
had instantaneous dynamics and a reversal potential of �70 mV, and the
PD synapse had slower dynamics (with a fixed time constant of 50 ms)
and a reversal potential of �80 mV (the K � reversal potential in the
model). Each synapse was driven by a fixed presynaptic voltage waveform
with a typical pyloric period of 1 s. These were based on smoothed re-
cordings of AB (for the AB and PD synapses) and PY (for the PY synapse),
which were then subjected to Fourier analysis. The presynaptic voltage
used for the AB and PD synapses was as follows:

vAB/PD�t� � �62.6 � 11.039cos�2� � f0t� �

5.199cos�2� � f0t � 5.184� � 1.437cos�2� � 3f0t � 10.824� �

0.323cos�2� � 4f0t � 14.913� � 0.256cos�2� � 5f0t � 19.364� �

0.325cos�6� � 6f0t � 18.787� � 0.110cos�2� � 7f0t � 23.995�, (8)

where vAB/PD is in millivolts, t is in seconds, and f0 	 1 Hz, the funda-
mental frequency of the simulated rhythm. Similarly, the presynaptic
voltage used for the PY synapse was as follows:
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vPY�t� � �57.6 � 11.425cos�2� � f0t � 1.293� �

4.407cos�2� � 2f0t � 0.503� � 1.581cos�2� � 3f0t � 0.019� �

1.177cos�2� � 4f0t � 0.095� � 0.786cos�2� � 5f0t � 0.460� �

0.598cos�6� � 6f0t � 7.240� � 0.305cos�2� � 7f0t � 7.474�. (9)

For all synapses, the synaptic conductance was then given by the follow-
ing equations:

gsyn � g�syn � s (10)

�synṡ � s
��vpre � vthresh�/vscale� � s, (11)

where gsyn is the synaptic conductance, g�syn is the maximal synaptic con-
ductance, s is the fractional activation of the synapse, �syn is the synaptic
time constant, vpre is the presynaptic voltage, vthresh is the synaptic
threshold, and vscale sets the voltage sensitivity of the synapse. s
(x) is the
Naka-Rushton function, given by 1/(1 � x �2) for x � 0, and 0 otherwise.
For the AB and PD synapses, vthresh 	 �58 mV and vscale 	 15 mV. For

the PY synapse, vthresh 	 �53 mV and vscale 	 3 mV. For the AB and PY
synapses, �syn 	 0 ms, and for the PD synapse, �syn 	 50 ms.

Construction of baseline model
Once we had established reasonable descriptions of the intrinsic and
synaptic currents in the LP neuron, we next wanted to establish a mor-
phology for the model that mimicked the morphology of the biological
LP and captured some rudimentary aspects of its electrophysiology. Ad-
ditionally, we feared that a “brute force” search of possible morphologies
and possible conductance distributions would be prohibitively time con-
suming. We therefore built a “baseline” model that was similar to LP in a
number of ways: it had a morphology grossly consistent with the biolog-
ical LP, it had spikes that were generated distally and were greatly atten-
uated in the soma, its input impedance was similar to that of LP (data not
shown), its spike-frequency versus voltage curve was similar to that of LP,
and it had voltage-gated currents similar to those of LP.

In developing the baseline model, we started with the simplest possible
model and added complexity as needed to agree with the data. We even-
tually settled on a four-compartment model (Fig. 1) that combined a

Table 1. Equations governing the voltage dependence and kinetics of currents in the LP model

The first column gives the name of the current, the second column gives the form of the gating factor (w; see Materials and Methods, Modeling voltage-gated currents), the third column gives the steady-state activation, the fourth column
gives the time constant of activation, the fifth column gives the steady-state inactivation, and the sixth column gives the time constant of inactivation. Membrane potentials (v) are in millivolts, internal calcium concentration (�Ca�i) is in
micromolars, and time constants (�m, �h) are in milliseconds. The function lgc(x) is equal to 1/�1 � exp(� x)�, and linoid(x) is equal to x/�exp(x) � 1�. The parameter v½,pr was chosen at random when sampling the parameter space. In
the baseline model, it had a value of �45 mV.
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good fit to the impedance over a range of frequencies (0.1–200 Hz), a
reasonable spike height as recorded in the soma (�9 mV), and a reason-
able resting membrane potential (approximately �40 mV).

We then added the reformulated voltage-gated conductances to
the soma and neurite compartments of the four-compartment model
(Fig. 1). Somatoneuritic currents (Ileak, IKd, IA, ICa, IKCa, Ih, and Ipr) were
present at uniform density in the soma and neurite compartments and
were absent elsewhere. The synaptic currents were present at uniform
density only in the neurite compartments, and the axonal currents
(Ileak,ax, INa, IKda, and IAa) were present only in the axon compartment.
All of these distributions are simplified versions of the true channel dis-
tributions in biological LP neurons (Hartline and Graubard, 1992; Baro
and Harris-Warrick, 1998; Baro et al., 2000; French et al., 2004), but they
are likely to be reasonable approximations at the level of detail we are
interested in at present. The maximal conductances of most voltage-
gated conductances were set to values close to those seen in the voltage-
clamp recordings. The single exception to this was g�KCa, which was set to
a value �40% of the value seen in voltage-clamp recordings. We found
that increasing g�KCa beyond this value led to endogenous bursting, which
is not usually observed in the isolated LP in C. borealis. (It is not entirely
clear why this is the case, but we suspect that the published voltage-clamp
recordings were traces chosen for their large currents and that single LP
neurons may not have all currents simultaneously large.)

Because the resulting model had physiological behavior that approxi-
mately matched that of the biological LP, with grossly reasonable maxi-
mal conductances, we declared this model an acceptable baseline model
for later sampling of the parameter space. We note that the baseline
model is not itself an admissible LP model. In particular, it bursts too late
in the cycle in response to pyloric-like input, and the spike frequency
during the burst is too low. This necessitated the use of sampling to
generate admissible LP models (see Results, Production of LP model
population).

All simulations of the baseline and sampled models were performed using
NEURON (Carnevale and Hines, 2005) as a simulation engine, which was
called from Matlab (Mathworks). Unless noted otherwise, the CVODE in-
tegration method was used with an absolute tolerance of 25 �V for voltage,
10 nM for internal [Ca2�], and 0.001 for gating variables.

“Measuring” electrophysiological properties of models
We measured the electrophysiological properties of models under three
different conditions: a small voltage-clamp step, to assess input conduc-
tance; no input, to assess spontaneous activity; and a pattern of rhythmic
synaptic inhibition, to mimic the input the LP neuron receives during the
ongoing pyloric rhythm. These inputs were delivered to each model cell,
and the output of the cell was analyzed to measure the various electro-
physiological properties. All of the codes for managing the simulations,
checking whether their responses had come to steady state, and charac-
terizing the resulting model behaviors were written in the Matlab script-
ing language.

First condition: small voltage-clamp step. The cell soma was clamped to
�60 mV and allowed to come to steady state. The soma potential was
then stepped to �65 mV for 150 ms, a typical step duration used in
experimental protocols to measure input conductance. The difference in

steady-state current, �I, between the holding potential and the test po-
tential was then divided by the potential difference, �v 	 �5 mV, to
obtain the input conductance, Gin. For this stimulus, the sodium con-
ductance, proctolin-activated conductance, and synaptic conductances
were all zeroed, to simulate the conditions in which these measurements
were made experimentally. Additionally, an electrode-induced shunt
(with a conductance of 15 nS and a reversal potential of �35 mV) was
included in the models for this protocol only, because an electrode-
induced shunt in the experiments will clearly have a strong effect on
measurements of Gin. Because simulation of voltage clamp necessitates
the solution of a stiff set of differential equations (Carnevale and Hines,
2005), this protocol was run using the backward Euler integration
method, and a time step of 25 �s.

Second condition: no current injection. This condition simulates the
spontaneous activity of a neuron that has been isolated from pyloric
inputs but still receives descending modulatory inputs. Therefore, the
synaptic conductances were zeroed, but the proctolin-activated conduc-
tance and the sodium conductance were not. We simulated this condi-
tion until the model came to apparent steady state and computed a
number of features based on its steady-state waveform. These include the
qualitative type of activity (silent, periodic spiker, aperiodic spiker, peri-
odic nonspiker, or aperiodic nonspiker); the minimum, maximum,
mean, and SD of the soma potential, axon potential, and somatic Ca 2�

concentration; the number of spikes; the spike frequency; the mean spike
duration; the mean and SD of the interspike intervals; the duration of the
burst; the minimum, maximum, mean, and SD of the slow-wave somatic
potential (the somatic potential if spikes are deleted, interpolated over,
and the resulting waveform is low-pass filtered); the maximum spike
height; and the cycle period. Some of these are only applicable for some
qualitative activity types.

Third condition: periodic synaptic inhibition. Each model was subjected
to a pattern of rhythmic synaptic inhibition that approximates what the
LP neuron receives during the ongoing pyloric rhythm (see above, Mod-
eling synaptic currents). In this condition, no conductances were zeroed.
The synaptic currents were injected into the model until it reached ap-
parent steady state, and the same scalar properties described above were
computed based on the steady-state waveform in this condition.

In more detail, the synaptic inputs were provided to each model for
several cycles, using the same initial conditions as used for the spontane-
ous activity. After each cycle, the last cycle was compared with the pen-
ultimate cycle to determine whether the model had come to steady state.
To be considered at steady state, four quantities had to be approximately
equal on the last and the penultimate cycle: mean somatic voltage, SD of
somatic voltage, mean somatic [Ca 2�], and SD of somatic [Ca 2�]. Volt-
ages (both mean and SD) were considered “approximately equal” if they
differed by 
0.1 mV, and Ca 2� concentrations were considered approx-
imately equal if they differed by 
0.01 �M.

Statistics
To test whether two parameters were significantly correlated in the pop-
ulation of 1304 LP models, we calculated the correlation coefficient (r)
between the two parameters and used a permutation test to determine
whether the calculated r differed significantly from zero. A significance
level of 	 	 0.001 was used for each pair of parameters to facilitate
comparison with Schulz et al. (2007).

Cubic fits
To develop a simple description of how a particular electrophysiological
property depends on the model parameters, we fit cubic functions to a set
of “data” consisting of a population of LP models. Each model had a set
of parameters (maximal conductances, etc.) and a number of electro-
physiological properties (resting membrane potential, slow-wave ampli-
tude in response to rhythmic inhibition, etc.). One property at a time was
fit, and each was treated as a scalar function of the parameters. To put all
parameters on a common scale, each parameter was “z-scored” (the
mean value of the parameter in the LP model population was subtracted
off, and the SD was then divided out) before fits were performed.

A quadratic polynomial in 17 variables has 17 � 2 choose 17 	 171
terms, each with an associated coefficient, and a full cubic model has

Figure 1. Circuit diagram of model. Each rectangle is an electrical compartment. Conduc-
tance abbreviations in each rectangle indicate which conductances were present in that com-
partment. All conductances were present at uniform density across the soma, near neurites, and
far neurites compartments.
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17 � 3 choose 17 	 1140 terms/coefficients. A polynomial with a small
number of coefficients will generally have good generalization perfor-
mance but may not be able to fit the target function well. A polynomial
with a large number of coefficients will be better able to fit the target but
may suffer from overfitting and therefore not generalize well (Hastie et
al., 2001). To have finer-grained control over the number of coefficients
(and thus the fit-quality/generalization tradeoff), we used a subset of the
1140 possible terms, selected using a cross-validation procedure.

The LP models were first divided into a training set (90%) and a test set
(10%). We used fivefold cross-validation on the training set to determine
a set of terms that were likely to have an optimal fit on novel models. We
varied the number of terms, starting with a single constant term, and
added terms until we found a set of terms that gave the lowest cross-
validation error. The next term to add was determined by temporarily
adding all terms that could be obtained by increasing the degree of an
existing term by 1 (not going beyond cubic terms), fitting the resulting
polynomial to all of the training data, and retaining the most significant
novel term (as determined by a t test). For this type of procedure, the
cross-validation error at first decreases as the number of terms increases,
but after a critical number of terms are added, the cross-validation error
starts to increase. We then selected the simplest polynomial that had
error not significantly worse than the minimum error, as assessed by a t
test, and used this as our final polynomial. This was then fit to all of the
training set to establish a final set of coefficients, and this fit was evaluated
on the test set as a final metric of the quality of the fit. Determining the
cubic coefficients involves finding the least-squares solution of a set of
equations that is linear in the coefficients. In all cases, the final number of
coefficients was much less than the number of data points in the training
set (largest number of coefficients was 158, number of training data
points was 1174) (see Table 4), so the best-fit cubic coefficients were
uniquely determined. SEs for the coefficients were calculated using the
usual normal-theory formulas for linear regression (Draper and Smith,
1998).

Results
The LP neuron has a complex morphology (Fig. 2A), and it plays
a critical role in the pyloric rhythm of decapod crustaceans
(Harris-Warrick et al., 1992). The pyloric rhythm consists of
three distinct phases: (1) the AB and PD neurons fire a burst of
spikes (because of their strong electrical coupling, these neurons
are collectively referred to as the “pacemaker kernel”); (2) the LP
neuron fires a burst of spikes; and (3) the PY neurons fire a burst

of spikes (Fig. 2B). The phase at which the
LP neuron fires is remarkably consistent
from animal to animal, despite substantial
variation in the pyloric frequency across
animals (Bucher et al., 2005) (J. M. Goail-
lard, A. L. Taylor, D. J. Schulz, and E.
Marder, unpublished observation). In the
crab C. borealis, the waveform of the LP
neuron reflects the three phases of the py-
loric rhythm: during the first phase, when
the pacemaker kernel is active (Fig. 2B, left
gray bar), it is deeply hyperpolarized; in
the second phase, it fires a burst of spikes;
and in the third phase, it is inhibited by the
PY neurons, but not as much as during the
pacemaker activity (Fig. 2B, right gray
bar). The bursting of LP is primarily net-
work driven: when it is synaptically iso-
lated from pyloric inputs, LP fires tonically
in C. borealis (Fig. 2C) (Golowasch and
Marder, 1992a).

Previous work has shown that mRNA
levels for a number of voltage-gated chan-
nels in LP are correlated (Schulz et al.,
2007). Furthermore, for two of three chan-

nel types examined, these subunit mRNA levels correlate with the
conductance of the channel (Schulz et al., 2006). To gain insight
into whether these sorts of correlations might arise from electro-
physiological constraints on LP, we constructed a population of
multicompartment models of LP, in which maximal conduc-
tances were varied and their effects on electrophysiological prop-
erties were examined.

Production of LP model population
To generate the LP model population, we first developed a base-
line model (see Materials and Methods) and then generated
�6 � 10 5 models with randomized parameters in a large neigh-
borhood around this baseline model (Fig. 3). For maximal con-
ductances and maximal permeabilities, the range of possible val-
ues for each was from zero to approximately twice the value in the
baseline model, so that each would span a realistic range. [Max-
imal conductances are found to vary threefold to fourfold in this
system (Golowasch and Marder, 1992a; Goldman et al., 2001;
Golowasch et al., 2002; Schulz et al., 2006, 2007).] Leak reversal
potentials were varied over a 10 mV range centered on their base-
line values, somewhat arbitrarily. The half-activation potential of
the proctolin-activated conductance (v1/2,pr) was varied over a
20 mV range centered at �45 mV, approximately consistent with
the range observed experimentally (Golowasch and Marder,
1992b; Swensen and Marder, 2000) (Goaillard, Taylor, Schulz,
and Marder, unpublished observation). The parameters and
their ranges are shown in Table 2. Each parameter was chosen
from a uniform distribution within the given range, and each
parameter was chosen independently of all other parameters. The
capacitances and axial resistances of the model were fixed. This
approach is similar to that taken in previous work (Foster et al.,
1993; Goldman et al., 2001; Prinz et al., 2003, 2004b; Achard and
De Schutter, 2006; Tobin et al., 2006; Hobbs and Hooper, 2008;
Weaver and Wearne, 2008).

We chose 594,910 parameter sets in this way and performed
simulations on each of the resulting models to measure their
electrophysiological properties (see Materials and Methods).
Each model was assessed in three different conditions. First, the

Figure 2. LP neuron morphology and activity. A, Two-photon laser-scanning confocal microscopy image of the LP
neuron. B, Intracellular recording of the LP neuron during the ongoing pyloric rhythm. PD nerve (pdn) and pyloric nerve
(pyn) recordings are included to show relative timing of the LP burst. Spikes on the pdn are from the two PD neurons, and
the larger spikes on the pyn are from the PY neurons. C, Intracellular recording of the LP neuron when pyloric inputs have
been blocked by applying 10 �5

M picrotoxin.
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model was subjected to a small voltage-clamp step. Second, the
model was given no input, and its spontaneous behavior was
observed. Third, a periodic synaptic input was delivered to mimic
the pyloric inputs that LP receives during the ongoing pyloric
rhythm. In the voltage-clamp condition, the model’s input con-
ductance was measured. In the no-input condition, several prop-
erties were measured, including the model’s spontaneous activity
pattern, its resting membrane potential, and its resting spike rate.
In the pyloric-input condition, measurements included the phase
of burst onset, the phase of burst offset, the spike rate in the burst,
the slow-wave amplitude, the peak slow-wave membrane poten-
tial, and the coefficient of variation of the interspike interval in
the burst. All properties were automatically measured by the sim-
ulation code (see Materials and Methods).

We then examined this population of �6 � 10 5 models and
selected only those with properties that were in a range that
agreed with those of the biological LP neuron, using the bounds
shown in Table 3. To be an acceptable LP model, the model had to
(1) spike periodically when deprived of input; (2) have an inter-
spike interval coefficient of variation 
0.01 when deprived of
input, to ensure that it spiked approximately tonically; (3) fire in
a reliable pattern from cycle to cycle in response to the pyloric-
like input; and (4) have all properties listed in Table 3 within the
bounds given. In most cases, the bounds were chosen to contain

the central �85% of the experimental data points (see Fig. 4,
dashed lines). Resting spike rate was higher than those seen in
experiments in which the LP neuron is isolated from pyloric net-
work inputs, but similar to the spike rates within an LP burst.
Input conductance was restricted to a range generally lower than
previously reported experimentally [because the impedance
measurements (data not shown) indicated a DC impedance gen-
erally larger than those reported previously], but the ratio be-
tween highest and lowest allowed values was similar to the ratio
between the upper and lower bound of the central 85% of the
experimentally measured values (Golowasch and Marder,
1992a).

Filtering the population of �6 � 10 5 models using these cri-
teria yielded 1304 acceptable models of LP. Traces of model LP
activity look reasonable, as shown in Figure 3. Both the sponta-
neous activity of these models (compare Figs. 2C, 3A) and their
activity in response to pyloric-like input (compare Figs. 2B, 3B)
look similar to recordings of biological LP neurons. In response
to pyloric-like inputs, the model LPs generally displayed a burst
phase, a phase in which they were mildly hyperpolarized (during
which LP receives PY inhibition), and a phase of deep hyperpo-
larization (during which LP receives pacemaker inhibition).
These same three phases are present in recordings from biological
LP neurons (Fig. 2B). Although strongly constrained electro-
physiologically, the parameters of these models displayed wide
variability (Fig. 3C) (also see below).

Histograms of the constrained properties are generally similar
between model and experiment (Fig. 4). Consistent with this, the
resting membrane potential (data not shown) was similar to that
of the biological LPs (experiment: �46.8 � 6.5 mV, n 	 5; model:
�44.1 � 2.1 mV, n 	 1304; mean � SD). Two additional prop-
erties that we did not explicitly constrain at this stage were also
consistent with the biology. The height of spikes as measured in
the soma was similar between model and experiment (experi-
ment: 7.7 � 1.8 mV, n 	 5; model: 8.0 � 0.6 mV, n 	 1304;
mean � SD). Also, the model impedances all matched the qual-
itative shape of the experimental impedance from 0.1 to 200 Hz
(data not shown).

Weak correlations between pairs of parameters in the
population of LP models
We examined whether the constraints imposed on the electro-
physiological behavior of model LP neurons was reflected in the
distributions of model parameters. Histograms of the model pa-
rameters for the 1304 models showed wide variability in most
parameters (Fig. 5A). For most parameters, models could be
found that spanned the sampled range. That is, when the range
was binned into 10 bins, at least one model was found in all bins.
Other parameters had restricted ranges in the LP population. The
most strongly restricted parameter was g�Aa, which was restricted
to about half the sampled range. g�Kda and g�synPY also had
restricted ranges.

Does the population of 1304 model LP neurons exhibit any
correlations between pairs of model parameters? This was of par-
ticular interest because previous experimental results demon-
strated correlations between different voltage-gated conduc-
tances, some biophysically and some at the level of channel
mRNA values (MacLean et al., 2005; Schulz et al., 2006, 2007).
Therefore, we calculated correlation coefficients for each pair of
parameters and tested these for significance (Fig. 5B) (see Mate-
rials and Methods). We found that correlations between different
parameters in the LP population were generally weak (Fig. 5B)
(red and blue backgrounds show significant correlations at 	 	

Table 2. Range of parameters used in random sampling of parameter space

Parameter Minimum Maximum Units

Soma and neurites Eleak �23 �13 mV
g�leak 0.001 0.002 �S/nF
g�Kd 0 0.2 �S/nF
g�A 0 0.5 �S/nF
P�Ca 0 6 �m3/(ms � nF)
g�KCa 0 1 �S/nF
g�h 0 0.02 �S/nF
g�pr 0 0.008 �S/nF
v½,pr �55 �35 mV

Neurites g�synAB 0 0.06 �S/nF
g�

stnPD
0 0.06 �S/nF

g�synPY 0 0.02 �S/nF
Axon Eleak,ax �7 �3 mV

g�leak,ax 0.2 0.45 �S/nF
g�

Na
0 600 �S/nF

g�Kd 0 74 �S/nF
g�Aa 0 100 �S/nF

For each model, each parameter was drawn independently from a uniform distribution with the given bounds. g�x is
the maximal conductance of any current x, Eleak values are leak reversal potentials in the indicated compartments,
P�Ca is the maximal permeability of the (nonohmic) calcium conductance, and v½,pr is the half-activation potential of
the proctolin-activated conductance. During sampling, the capacitances and axial resistances were fixed. See
Results, Production of LP model population, for an explanation of how these ranges were chosen.

Table 3. Bounds on properties used to define the population of admissible LP
model neurons

Property Lower bound Upper bound

Input conductance (nS) 36 132
Resting membrane potential (mV) �47.5 �32.5
Resting spike rate (Hz) 13.1 30.6
Phase of burst onset (%) 32.0 44.0
Phase of burst offset (%) 61.7 74.9
Spike rate in burst (spikes/cycle) 16.3 30.2
Slow-wave amplitude (mV) 12.5 27.5
Peak slow-wave potential (mV) �47.5 �32.5
ISI coefficient of variation in burst 0 0.25

In most cases, the bounds were chosen to contain the central �85% of the experimental data points (see Fig. 4,
compare dashed lines, histograms). For more details, see Results, Production of LP model population. ISI, Interspike
interval.
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0.001 for individual comparisons). Although a rather stringent
significance level of 	 	 0.001 was used for individual compari-
sons [and to facilitate comparison to Schulz et al. (2007)], this
corresponds to a family-wise significance level of 	 	 0.13 (n 	
136 comparisons, assuming comparisons are independent),
which is rather generous. Of the 136 pairs, 126 (93%) had esti-
mated correlation coefficients between �0.2 and �0.2. The

strongest correlation was between g�Na and
g�Kda, which had a correlation coefficient
(r) of 0.49 � 0.04 [95% confidence inter-
val (CI)].

To determine whether the observed
correlations would likely be detected using
typical experimental techniques, we
picked a random subset of 20 models and
tested for significant correlations (this
time using a t test, rather than the more
computationally expensive permutation
test). n 	 20 was chosen because it is a
reasonable value of n for these types of ex-
periments. This was repeated 2000 times,
each time using a different random subset.
A significant correlation (at 	 	 0.001) be-
tween g�Na and g�Kda was found in 12.5 �
1.5% (95% CI) of trials, and all other pairs
were lower than this. Of the 136 pairs ex-
amined, 131 (96%) had a chance of discov-
ery of 
1%. Together, these results imply
that the constraints imposed on the elec-
trophysiological properties of the model
LP neurons were not sufficient to induce
the strong pairwise correlations observed
experimentally. This implies that, at least
in the model, strong correlations like those
measured experimentally are not required
for a population to have the electrophysi-
ological properties of an LP neuron.

The LP models are part of a single
“island” in parameter space
We were curious to know whether all of
the LP models were part of a single con-
nected island of LP cells in parameter
space. That is, is it possible to continu-
ously vary the parameters of one LP
model and thereby transform it into any
other LP model, and to do so in such a
way that all intermediate models are also
LP models? We cannot prove mathemat-
ically that this is the case, but we have
strong circumstantial evidence that all of
the LP models are part of a single con-
nected volume in parameter space.

To establish this, we drew a line seg-
ment between pairs of models in parame-
ter space and tested four equally spaced
points on this line to see whether they also
satisfied the criteria for an LP model. If
they did, we considered the two models to
be connected. In addition, if two models
are each connected to a third model, then
we considered the original two models to
be connected. By performing this test on

many pairs of models, we were able to establish that all 1304 LP
models are connected to one another, at least provisionally.
(Note, however, that it does not imply that the set is convex, and,
in fact, we found many pairs of models that had non-LP models
on the line between them but that were connected via a path
involving one or more intercalated models.) This provides strong
evidence that our population of LP cells are all part of a single

Figure 3. Activity of six LP models, chosen at random. A, Spontaneous activity in six LP models, chosen at random. This is the
model activity in the absence of synaptic inputs. Somatic potential is shown. B, Activity in response to pyloric-like inputs. Models
are the same as in A, with corresponding colors. C, Model parameters for each model, scaled to the ranges used for sampling (see
Table 2). Note that the models have very different patterns of maximal conductances and other parameters, despite having grossly
similar activity. max, Maximum; min, minimum.
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connected volume of LP cells in parameter
space, rather than being in a number of
islands of LP models separated by one or
more “oceans” of non-LP models.

Polynomial fits of the
property functions
It is highly desirable to have a quantitative
description of how each parameter in a
neuronal model influences each electro-
physiological property. The computa-
tional model provides such a description
only implicitly. A more direct description
would be provided by a single equation
that computes the magnitude of the elec-
trophysiological property given the pa-
rameters. To provide such a description,
we performed a multiple regression on
each electrophysiological property, using
the model parameters as predictors. This
approach is similar to approaches used
previously (Rabitz and Alis, 1999; Feng et al., 2004, 2006; Feng
and Rabitz, 2004; Feng, 2005), but those approaches are not well
suited to our LP population because our LP model population
was not generated via independent variation of parameters (be-
cause of the filtering step). We first tried linear fits and quadratic
fits to each electrophysiological property, but neither provided
acceptable fits. A linear fit has the property that a given change in
parameters will have the same effect on output, independent of
the starting parameters; for instance, increasing g�A by 3 �S/nF
and g�pr by 1 �S/nF will always increase the slow-wave amplitude
by 2 mV, regardless of the starting parameters. This will obviously
not be true for many parameter-to-property maps arising in
complicated biological systems, and allowing quadratic and
higher-order terms in the polynomial fit allows a fit to avoid this
constraint.

We then tried cubic fits to each electrophysiological property
and found that these performed well: we obtained R 2 values
�0.85 for six of the eight properties we examined (Table 4). This
indicates that these six properties, as functions of the parameters,
were well approximated by cubic polynomials.

As an example, the coefficients of the fit to one of these, the
slow-wave amplitude, are shown in Figure 6. The quality of the fit
is shown graphically in Figure 6A, which plots the true slow-wave
amplitude in each model versus the slow-wave amplitude “pre-
dicted” by the fit. The points are near the identity line, indicating
a good fit. Insight into which parameters influence the slow-wave
amplitude, and in what way, can be gained by examining the
coefficients of the fit. The coefficients of the linear terms in the
cubic fit show large contributions from g�A, g�synPD, g�pr, P� Ca, g�Aa,
g�synAB, and g�leak,ax (Fig. 6B). The sign of these coefficients reveals
whether the contribution of that term tends to increase the slow-
wave amplitude as that parameter is increased (positive sign), or
decrease it (negative sign). Some of these effects are expected:
because the PD synapse onto LP acts to hyperpolarize LP during
the trough of its oscillation, one would expect that increasing
g�synPD would increase the slow-wave amplitude. In addition, be-
cause the somatoneuritic IA current would act to limit the re-
bound from inhibition, one might expect increasing somatoneu-
ritic g�A to decrease the slow-wave amplitude. Other coefficients
were more surprising: the linear coefficient of g�Aa (the axonal
form of IA, which has generally faster kinetics than the somato-
neuritic IA) was large and positive, indicating that increasing g�Aa

tends to increase the slow-wave amplitude. This was unexpected
and is especially surprising in light of the fact that increasing the
somatoneuritic IA has the opposite effect. We found that this
effect was caused primarily by a hyperpolarization of the trough
potential in the axon (the lowest point of the slow wave), itself
caused by the release from inactivation of IAa after the LP burst,
which was then passively propagated to the soma. This consti-
tutes a prediction of our model.

The quadratic coefficients of the cubic fit reveal nonlinear
effects of changing model parameters (Fig. 6C). Two different
kinds of quadratic terms in the cubic fit are possible: one kind
involves the square of a single parameter (along the diagonal in
Fig. 6C), and the other involves the product of two different
parameters (off the diagonal in Fig. 6C). In the case of the slow-
wave amplitude fit, the largest quadratic coefficient was for the
square of v1/2,pr, the half-activation of the proctolin-activated
current. The coefficient for this term was negative, meaning that
either increasing or decreasing v1/2,pr, relative to its mean value
will tend to decrease the slow-wave amplitude, counteracting
somewhat the linear effect of decreasing v1/2,pr.

Cubic terms in the polynomial also describe nonlinear effects
of changing model parameters, but involving products of three
parameters, rather than two. These three parameters can all be
the same, resulting in terms containing single parameters to the
third power, or combinations of different parameters. In the
slow-wave amplitude fit, the largest-magnitude cubic coefficient
is for the cube of g�synPD, reflecting a nonlinear influence of g�synPD

on slow-wave amplitude that somewhat counteracts the linear
g�synPD term (because the cubic coefficient is negative whereas the
linear coefficient is positive and has a larger magnitude). These
sorts of insights into what parameters affect other properties can
also be obtained by examining the coefficients of those fits, at
least in cases where the fit is good.

Using polynomial fits to quantify the effect of each parameter
on each electrophysiological property
We wanted to quantify the overall contribution of each model
parameter to determining each of the neuron’s electrophysiolog-
ical properties. We did this by starting with the coefficients of the
final fit to a property, and setting all of the model parameters to
their mean values. We then set them back to their actual values
one parameter at a time and noted how much of the variance in
the property was explained with the addition of each parameter,

Figure 4. Comparison of pyloric activity in experiment and model. A, Histograms of onset phase of firing in experiment (exp)
and models. B–E, Histograms of other properties of LP activity in the pyloric rhythm (exp) and in response to a pyloric-like pattern
of synaptic inputs (model). Dashed lines in all panels show the constraints imposed on the model population to yield the LP models
(as in Table 3). The y-axis in all panels is the percentage of data points.
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as a fraction of the total variance explained by the complete fit.
Typically, the amount of variance accounted for by each param-
eter varies depending on the order in which parameters are
added. Therefore, we repeated this process 3000 times, with a
random order each time, and averaged the variance added over all
repeats. This yielded a measure of the influence exerted by each
parameter on the final fit such that the influence of all parameters
summed to 1. These “influence factors” are shown in Figure 7 for
each property we examined. Interestingly, we found that essen-
tially all properties are affected by many parameters and that the
relative importance of parameters varied from property to
property.

Comparing polynomial fitting to traditional
sensitivity analysis
Fitting a polynomial to a model property can be viewed as an
alternative to more traditional sensitivity analysis. In sensitivity
analysis, one typically starts with a single best model, and then
each model parameter is varied, one at a time, and the change in
the model property is plotted versus each parameter (Butera et
al., 1999; Hill et al., 2001, 2002; Jezzini et al., 2004). In theory,
fitting a polynomial gives the same information but also tells one
how the model responds to combinations of parameter changes.
Nevertheless, we were curious to see how the polynomial fits
compared with sensitivity analysis. For individual models in the

Figure 5. Distributions of parameters and pairs of parameters in a population of 1304 model LP cells. A, Histograms of individual parameter values. Each x-axis spans the sampled range. Each
y-axis is different. B, Scatterplots of pairs of parameter values. Each scatterplot contains 1304 points, corresponding to each of the LP models. Because each pair of parameters can be plotted either
as x versus y or y versus x, the scatterplot matrix is symmetric about the diagonal. Scatterplots with blue/red background displayed a statistically significant positive/negative correlation between
the two parameters. Histograms highlighted in yellow are those that arguably correspond to channels that Schulz et al. (2007) found to be positively correlated at the level of mRNA.
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test set, we varied each parameter �25% of its original value and
performed simulations to see how model properties changed.
Voltage parameters were varied �5 mV. We compared the values
in these simulations to the values predicted by the polynomial fit.
An example is shown in Figure 8A, for the polynomial fit to the
spike rate in the LP burst. This example displays good agreement
between the cubic fit and the sensitivity analysis results.

In many cases, the polynomial fit lines matched the sensitivity
analysis curves fairly well (Fig. 8B). To quantify the quality of
these fits, we calculated R 2 values for the cubic fit to each property
in the neighborhood of each test model, using data from the
sensitivity analysis around each test model. For this analysis, we
were mainly interested in how well the cubic fits predicted
changes from the property value at the test model, so we sub-
tracted the fit property value at the central model from the fit
values and similarly subtracted the simulation property value at
the central model from the simulation values. (Failure to perform
this step yielded R 2 values that were generally much lower.) This
analysis yielded a range of R 2 values, but the median across test
models was �0.5 for all but one property (phase of burst end, the
property for which the cubic fit performed worst overall). This
indicates that the cubic fits were able to predict the results of
sensitivity analysis fairly well in most cases. However, in some
cases, the cubic fits did not predict the sensitivity curves well, as
indicated by low or even negative R 2 values (a negative R 2 value
indicates a fit worse than would be achieved by simply fitting the
data by a constant). Although the cubic fits are not a substitute for
traditional sensitivity analysis, on the whole the ability of the
cubic fits to predict the results of sensitivity analysis were striking,
especially because the test models were not used in constructing
the fits.

Discussion
How does the combination of voltage-gated conductances in a
neuron determine its electrophysiological properties? In this
study, we analyzed a population of 1304 model neurons, all of
which meet stringent criteria that match those of a specific bio-
logical neuron. We found (1) that a population of neurons can
have a well constrained electrophysiological phenotype but still
display disparate underlying maximal conductances with only
weak correlations between conductances and (2) that each prop-
erty of an identified neuron with well defined behavior is affected
by a different set of maximal conductances. These results have
implications for the interpretation of experimental results about
the effect of neuronal parameters on electrophysiological
properties.

Are correlations between maximal conductances required for
a given electrophysiological phenotype?
The population of LP models did not show strong correlations
between pairs of model parameters, including maximal conduc-
tance parameters. This is interesting, because experimental work
found strong correlations between mRNA copy numbers for
voltage-gated channels in LP and other STG cells (Schulz et al.,
2006, 2007). Although in some cases the mRNA levels correlate
strongly with conductance magnitudes measured in voltage
clamp (Schulz et al., 2006), it is not known whether mRNA copy
numbers are well correlated with maximal conductances for all
kinds of channels in all neuron classes.

There are two possible explanations for the lack of strong
correlations in the model population: either the model fails to
capture something important about the neuron’s behavior or the
neuron’s electrical firing properties do not require the correla-
tions seen in the molecular studies. Consistent with the latter
explanation, it is possible that the correlations observed experi-
mentally do not arise from electrophysiological constraints, since
it is possible to construct LP neurons with conductance ratios
other than those observed experimentally and still “act” like LP
neurons electrophysiologically. If this were the case, the ratios
observed experimentally might be a consequence of the tran-
scriptional regulation of channel genes (Latchman, 1997; Fan et
al., 2000; Brivanlou and Darnell, 2002; Rosati and McKinnon,
2004). For instance, having subunits of multiple channel types
under the control of a common transcription factor might be
simpler than independent transcriptional control of each channel
type. This could result in different subunits being expressed in
fixed ratios. Thus, the presence of correlations between conduc-
tances does not automatically imply that these correlations are
required for proper electrophysiological behavior.

Using polynomial fits to capture the relative roles of multiple
conductances on neuronal activity
The cubic fits allowed the quantification of the influence of each
parameter on each electrophysiological property (Fig. 7). Each
property was affected, at least to some extent, by many parame-
ters in the model, but different properties were affected by vari-
ous parameters to different extents. Recent work on a model of
globus pallidus neurons yielded a similar result (Gunay et al.,
2008), suggesting that this is a feature common to many neurons.

The large influence of the axonal conductances, and particu-
larly the axonal leak and IA conductance (g�Aa), on the input con-
ductance was somewhat unexpected. This suggests that, at least in
the model, the axon is not as electrically irrelevant to the current–
voltage relationship at the soma as might be supposed given the
extreme attenuation of spikes in the soma. Although the contri-
butions of multiple parameters on different intrinsic properties
were generally different, those for the resting spike rate and the
spike rate in the burst were similar. This reflects the fact that these
two properties were strongly correlated in the LP model popula-
tion (data not shown).

Small influence factors should be interpreted with caution; the
synaptic conductances (g�synAB, g�synPD, and g�synPY) had small, but
nonzero, influence factors for the input conductance, resting
membrane potential, and resting spike rate, despite the fact that
all of these conductances were set to zero when these properties
are measured in the model. This is possible because of high-order
correlations between these parameters and parameters that do
affect these properties. These correlations are exploited by the
fitting routine to give significantly better fits than if the synaptic
conductance parameters are not used (data not shown). These

Table 4. Polynomial fits to model properties

Property
RMSE for
constant fita

Number of
coefficientsb

Test
RMSEc Test R2 d

Input conductance (nS) 8.69 112 2.88 0.89
Resting membrane potential (mV) 2.12 107 0.48 0.94
Resting spike rate (Hz) 3.44 135 0.82 0.95
Phase of burst onset (%) 3.20 158 1.85 0.70
Phase of burst offset (%) 2.64 30 1.95 0.43
Spike rate in burst (spikes/cycle) 3.40 140 0.92 0.93
Slow-wave amplitude (mV) 3.54 151 0.65 0.96
Peak slow-wave potential (mV) 2.51 122 0.54 0.95
aThe root mean-squared error (RMSE) for the constant that best fits the model property. This is also equal to the
square root of the variance of that property, calculated over all 1304 LP models.
bThe number of polynomial terms used in the best fit, as determined using cross-validation (see Materials and
Methods).
cThe RMSE for the final polynomial fit, as evaluated on the test set.
dThe R 2 for the final polynomial fit, as evaluated on the test set.
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potentially misleading influence factors are uniformly small and
do not detract from the utility of the influence factors overall.

The finding that each electrophysiological property is deter-
mined by a combination of several different conductances
(Fig. 7) has important implications for how one interprets exper-
iments involving pharmacological blockers, genetic deletions,
and neuromodulation. When the levels of conductances vary
from animal to animal, and when an electrophysiological prop-
erty depends on multiple conductances, blocking one of these
conductances may have highly variable effects on that property,
because in some animals the conductance may already be low and
be compensated for by the other conductances to keep the prop-
erty at a normal level. A similar argument holds for genetic dele-
tions, but with the added complication that if the deletions are
nonacute, the animal may compensate for the knock-out by reg-
ulating levels of other conductances (Guo et al., 2000; Zhang et
al., 2002; Xu et al., 2003; Zhou et al., 2003). Similarly, neuro-

modulator effects may vary from preparation to preparation be-
cause neuromodulators act on a particular set of conductances,
which may be high or low depending on the individual animal.

Approaches to understanding the effect of parameters on
electrophysiological properties
In a model, the simplest approach to understanding the effect of
parameters on electrophysiological properties is traditional sen-
sitivity analysis: identifying one “best” set of parameters, varying
one parameter at a time, and plotting the electrophysiological
property of interest against the varied parameter. This approach
has been fruitfully applied (Butera et al., 1999; Hill et al., 2001,
2002; Jezzini et al., 2004) but has two limitations: it is based on
examining departures from a single model, and it is based on
varying one parameter at a time, and therefore yields no infor-
mation about simultaneously changing multiple parameters.

Another approach is to generate a population of models, ei-

Figure 6. Coefficients of the polynomial fit to slow-wave amplitude. A, Quality of the fit. The slow-wave amplitude of each LP model is plotted versus the polynomial fit for that model. Purple
points were used in fitting, and orange points were used for testing (see Materials and Methods). R 2 for each class of points is given. A perfect fit would have all points along the identity line, shown
in black. B, Linear coefficients of the polynomial fit. Coefficients have units of millivolts because parameters were z-scored before fitting (see Materials and Methods). Error bars indicate SE. C,
Quadratic coefficients of the fit. D, Cubic coefficients of the fit. Panels with a shaded background correspond to axonal parameters. Parameters with uniformly small coefficients are omitted.

Taylor et al. • How Conductances Determine a Neuron’s Properties J. Neurosci., April 29, 2009 • 29(17):5573–5586 • 5583



ther by picking random values for param-
eters or by systematically scanning the pa-
rameter space (Foster et al., 1993;
Goldman et al., 2001; Prinz et al., 2003,
2004b; Achard and De Schutter, 2006; To-
bin et al., 2006; Hobbs and Hooper, 2008;
Weaver and Wearne, 2008). One can then
use visualization techniques to determine
how electrophysiological properties
change as parameters are varied (Ward et
al., 1994; Keim, 2000; Taylor et al., 2006),
although these techniques are often quali-
tative and choosing a good method of vi-
sualization can be difficult.

In some cases, one can derive closed-
form expressions for model properties as
functions of parameters (Abbott, 1990),
and this is arguably the best solution, when
it is possible.

In this work, we used cubic functions to
fit electrophysiological properties as a function of model param-
eters. This allowed a relatively simple description of model be-
havior over a population of models (not just in the vicinity of a
single model), and it described how these models respond to
multiple simultaneous parameter changes. Similar methods have
been used in the chemistry literature (Rabitz and Alis, 1999; Feng
et al., 2004, 2006; Feng and Rabitz, 2004; Feng, 2005) but have not
been commonly used to understand neuronal dynamics. We fo-
cused here on electrophysiological properties that were real func-
tions of the parameters. For example, the slow-wave amplitude is
described by a single real number for each possible choice of
parameters. Other cases of interest include properties that are
integer (e.g., number of spikes per burst), category (e.g., activity
type), or boolean (e.g., spiking or not) functions of the parame-
ters. Fitting polynomials might be useful for integer properties if
followed by a rounding operation but would not be ideal for
category properties. For these sort of problems, an approach
analogous to the one used here would be to use statistical classi-
fication (as opposed to regression) techniques (Hastie et al.,
2001).

A related problem is finding the set of points in parameter
space that all result in the same value for an electrophysiological
property (the level set). Olypher and Calabrese (2007) used a
numerical approximation to find the level sets of several electro-
physiological properties. The method used here offers a more
general answer to how parameters affect electrophysiological
properties as long as the polynomial fits are sufficiently accurate.
The cubic fits used here effectively describe all of the level sets of
a particular electrophysiological property.

Relation to previous models of STG neurons
These LP models capture many important features of the biolog-
ical LP neuron in C. borealis, including the response of LP to
pyloric inputs, the attenuation of spikes in the soma, and LP’s
input impedance. Previous models of LP have captured some of
these features but not all of them (Buchholtz et al., 1992;
Nowotny et al., 2008). One difference between the behavior of the
model and that of the biological LP neuron (Golowasch and
Marder, 1992a) is that the model fires more rapidly than the
biological neuron at rest, but without this we were not able to
obtain the appropriate firing rates in response to inhibitory
inputs.

Previous multicompartment models of STG neurons have

had only two compartments, one to model the generation of
spikes and another that contains the currents typically measured
in voltage-clamp experiments (Soto-Trevino et al., 2005;
Nowotny et al., 2008). Additional compartments were needed to
accurately model both the input impedance of LP (data not
shown) and the attenuation of spikes when measured in the
soma.

Conclusions
In this work, we found that a population of neurons can have a
well constrained electrophysiological phenotype but still display
disparate underlying maximal conductances with only weak cor-
relations between conductances, and that each property of an
identified neuron with well defined behavior is affected by a dif-
ferent subset of several maximal conductances. These results have
important implications for how one interprets experiments in-
volving pharmacological blockers, genetic deletions, and
neuromodulation.
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