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Abstract

We present a model of the single-ganglion oscillator of the leech swim central pattern
generator (CPG). The model is based on the known neuronal architecture of this circuit. Free
parameters in the model were "tted to produce membrane potential oscillations matching those
seen during swimming. However, the oscillations produced are not robust to small ($5%)
changes in the parameters. We propose that this may be due to the large di!erence between the
passive time constant of our model cells and the period of the swim oscillation. We discuss
possible ways the real circuit achieves robustness. ( 2000 Elsevier Science B.V. All rights
reserved.

Keywords: Leech swimming; Computational modeling; Central pattern generators

1. Introduction

How organisms produce coordinated, rhythmic behaviors such as chewing, respir-
ation, walking, crawling, and swimming is a fundamental question in the study of

0925-2312/00/$ - see front matter ( 2000 Elsevier Science B.V. All rights reserved.
PII: S 0 9 2 5 - 2 3 1 2 ( 0 0 ) 0 0 2 1 4 - 9



motor control. Many of these behaviors are driven by central pattern generators
(CPGs) which can produce a reasonable facsimile of the motor pattern in the absence
of sensory feedback. Swimming in the leech, Hirudo medicinalis, is driven by a CPG,
and the focus of this work is understanding how this CPG generates an oscillation. In
particular, we present a model of the segmental swim CPG, a component of the swim
CPG as a whole. Our model is, by design, very simpli"ed. In our view, the possibility
that the leech swim CPG oscillation is purely a network phenomenon has not been
adequately explored in the literature. Thus we sought to examine the behaviors
possible when each CPG cell is modeled as a single passive compartment, with no
voltage-gated currents of any kind. In the current model, we entirely neglect cellular
properties such as post-inhibitory rebound (PIR), which have been found in some of
the CPG cells, and which have been proposed as possible contributors to the
generation of swim oscillations. We have done this in an e!ort to explore whether the
available data on the leech swim CPG is compatible with a purely network-mediated
oscillation, with little or no contribution from these nonpassive properties.

2. Background

Swimming in the leech is governed by a CPG [10]. The neurons that form this CPG
are distributed among the 21 mid-body ganglia that comprise most of the central
nervous system of the animal. The swim CPG is composed of a set of eight cell pairs
and one unpaired cell per ganglion, and these cells are found in nearly all of the
midbody ganglia. The identi"ed swim CPG cells and their intraganglionic synapses
are shown in Fig. 1. (Similar diagrams in other published work show ten CPG cell
pairs instead of eight, but we have neglected two of these cells, cells 2 and 119, both
here and in the model, because of their relatively weak e!ects on other CPG cells [4].)
During a swim episode ("ctive or real), the membrane potentials of CPG cells
oscillate, and drive motor neurons that produce bursts of impulses which in turn drive
the muscles. One such motor neuron is cell 3, an exciter of the dorsal musculature.
A simultaneous recording of the membrane potential of a CPG cell and the corre-
sponding cell 3 action potential bursts is shown in Fig. 2. Each CPG cell's membrane
potential oscillation is phase locked with the cell 3 bursts and thus with the oscillation
of all the other CPG cells.

The swim CPG is &turned on' and &turned o! ' by a set of gating cells which are also
segmentally repeated. These cells make excitatory synapses onto the swim CPG cells,
and depolarization of the gating cells causes the swim CPG to &turn on', i.e. generate
an oscillation. The depolarizing current provided by the gating cells is, however,
tonic rather than phasic, and so does not contribute directly to the generation of
oscillations [16].

It has been shown experimentally that the CPG cells in an individual ganglion are
capable of generating an oscillation in the absence of any input from the CPG cells in
other ganglia [16]. The single-ganglion oscillation is not identical to that of a ganglion
which still receives input from the CPG cells of neighboring ganglia, in that the
individual cell waveforms and phase relationships are altered somewhat. Nonetheless,
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Fig. 1. Diagram of the swim CPG cells and their intraganglionic connections, modi"ed from [1]. Bar
endings represent excitatory chemical synapses, circle endings represent inhibitory chemical synapses, and
diode symbols represent rectifying electrical connections.

Fig. 2. Example of a simultaneous intracellular recording of a CPG cell (the cell 60 on the left side of
ganglion 11) membrane potential oscillation and an extracellular recording of the cell 3 motor neuron.
Figure modi"ed from [2]. The trace labelled &DP' is an extracellular recording of the DP (dorsal posterior)
nerve, which contains a cell 3 neurite. The periodic bursts observed in this nerve during swimming are
known to originate from cell 3 [12]. The horizontal line overlaid on the cell 60 trace is to indicate the rest
potential of the cell.

this experiment demonstrates that an isolated ganglion contains a competent CPG. In
an intact chain of ganglia, the swimming behavior arises from the segmental CPG
oscillations, coordinated and modi"ed by the interganglionic synaptic connections.

The swim CPG circuit has a number of interesting properties that are relevant to
any attempt to model it. The "rst is that none of the swim interneurons appear to be
endogenous oscillators [6]. This rules out one possible explanation of the circuit's
behavior, that it is simply a collection of one or more endogenous oscillators, with the
synaptic connections serving only to coordinate the individual cellular oscillators. The
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second is that synaptic transmission among neurons within a segment seems to be, to
a large extent, graded rather than spike-mediated [8,9]. This suggests that it may be
possible to understand the circuit's behavior without including spike generation in
one's model. The third is the near-absence of excitatory synapses. With the exception
of cell 208, none of the CPG cells make excitatory synapses onto other CPG cells. This
fact must be re#ected in a model of the circuit.

An early model of this system included only the "rst four swim CPG cell pairs to be
discovered, and was based on the hypothesis that the whole-cord CPG is composed of
a number of elemental CPGs, each of which spanned two ganglia, with the overlap-
ping of elemental CPGs providing for whole-body coordination of the swim [7]. This
model is not consistent with the later discovery that a single ganglion can generate an
oscillation. Later models have taken the single-segment oscillator as a given, and dealt
only with modeling the intersegmental coordination as a system of coupled oscillators
[13]. While these models are capable of predicting many features of intersegmental
coordination, by design they are agnostic about the mechanisms generating the
oscillation within a segment. Our goal here is to understand these intrasegmental
mechanisms.

3. Model desiderata

The aim of this work is to develop a model of the segmental swim CPG that is
consistent with the known cellular and synaptic properties of the biological system,
and which produces similar behavior. By &similar behavior', we mean:

(1) The membrane potential waveforms of the model are approximately the same as
those observed in the CPG cells during swimming, and have the correct phases
relative to one another.

(2) The model's frequency of oscillation increases as the tonic excitation of the system
(provided by the gating cells) increases.

(3) The model is capable of oscillation in the same range of frequencies as the real
system (0.5}2.0 Hz).

4. Form of the model

Our model includes the nine cell pairs and one unpaired cell which comprise the
segmental swim CPG. Each cell pair is modeled as a single electrical compartment,
since each cell in a pair is linked to its partner by a nonrectifying electrical connection,
and the two cells exhibit very nearly identical voltage trajectories in the swimming
preparation. Synapses are modeled simply as voltage-dependent ideal current sources.
This is a simpli"cation based on the idea that the changes in the driving force on the
ions mediating the synaptic current due to varying postsynaptic voltage can be
neglected, and the driving force assumed to be constant. In the model, the amount of
current injected to the postsynaptic cell varies as a logistic function of presynaptic
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voltage, up to some maximum current. This maximum current is the &strength' of the
synapse. Electrical synapses are neglected. Thus the system of equations governing
our system is
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is the
level of tonic excitation cell i receives during a swim, and vb is a variable which
controls the synaptic &gain', i.e. how steeply the sigmoid rises in its linear regime. x(t) is
a unitless measure of the extent to which the system is receiving excitation from the
gating cells (which are themselves not included in the model), and functions as the
input to the system. x(t)"0 corresponds to the non-swimming state, when the gating
cells are not exciting the CPG at all. x(t)"1 corresponds to the state wherein the
CPG is oscillating at 1 Hz, with lower/higher x(t) corresponding to lower/higher
frequency of oscillation.

5. Fitting to data

Since extensive data are not available on the membrane potential trajectories of
CPG cells during isolated-ganglion "ctive swims, we "t our model to data obtained
during whole-cord "ctive swimming. Those data were culled from a number of sources
in the literature [2}4,6,15]. Typically, the data consisted of an intracellular recording
of a single CPG cell along with a simultaneous extracellular recording of the cell
3 bursts, as shown in Fig. 2. Since the cell 3 bursts have characteristic phase
relationships with the CPG cell membrane potential oscillations, it was possible to
line up the CPG cell recordings in a way that approximates what one would see if one
were to record from all the CPG cells in a ganglion simultaneously, a technically
di$cult task. These traces were normalized to have a period of 1 Hz, a frequency
roughly in the middle of the range of possible swim frequencies. The traces were also low
pass "ltered (3 Hz cuto! ) to eliminate spikes and high-frequency noise from the traces.

A model such as ours, with several unknown free parameters, is often "t to
a number of input}output pairs, or targets. In our model, the input is the scalar
signal x(t), and the output is the vector signal *(t) (the vector of v

i
(t)s). We used four

targets in our "ts. In all four targets, the input is simply a constant. The targets were
as follows:

f Target 0 has x(t)"0 and v
i
(t)"0. It represents the non-swimming, or quiescent,

state of the CPG.
f Target 1 has x(t)"1. v

i
(t) is the 1 Hz oscillation based on the data culled from the

literature. This represents the basic swimming behavior.
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f Target 2 has x(t)"0.9. v
i
(t) is a time-scaled version of the oscillation data, such that

the frequency of the oscillation is 0.9 Hz. This represents a slower swim than that of
target 1.

f Target 3 has x(t)"1.1. v
i
(t) is again a time-scaled version of the oscillation data,

with a frequency of 1.1 Hz. This represents a faster swim than that of target 1.

The precise linear correspondence between the input magnitude and the oscillation
frequency in targets 2 and 3 is simply a matter of convenience. The duration of all
targets was 1.5 s, approximately one and a half cycles.

We "t our model to the data using a quasi-Newton optimization algorithm, as
implemented in the Netlab software package [11] in which the time-dependent
recurrent backpropagation (TDRBP) algorithm [14] is used to calculate the error
gradients. From Eq. (1), the "tted parameters are the I4:/

ij
s (the synaptic strengths), the

u
j
s (the half-activation voltage), and the I50/*#

i
s (the amount of excitatory gating

current that is injected into the cell during a 1 Hz swim). The parameters c
.
, g
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and vb we hold "xed at physiologically reasonable values. In the course of "tting, the
I4:/
ij

s were constrained in the following way to be roughly consistent with the biology:

(1) The model cell 208 was only allowed to make excitatory synapses, and only onto
two model cells, 28 and 115.

(2) Auto-synapses were not permitted.
(3) All other possible synapses were permitted, but they were constrained to be

inhibitory.

These constraints are meant to re#ect the general pattern of connections in the
circuit, rather than the detailed pattern of connectivity.

6. Results

We performed approximately 20,000 runs of the quasi-Newton code from indepen-
dent random starting points, constrained to be within reasonable physiological
ranges. Of these, the majority produced models which were locally optimal, but which
only "t the target data &in the mean'. That is, the model simply settled to a steady-state
for each input, with the steady-state voltage for each cell approximately equal to the
time average of the corresponding target voltage. However, a small number of the
runs (approximately 20) produced models capable of oscillation. These models, in
addition to "tting the data over the 1.5 s period on which they were trained, appear to
contain a limit cycle attractor, as one would hope. Fig. 3 shows the output of one such
system compared to the 1 Hz target oscillation, for a period of 3 s. The output of the
other oscillatory models was qualitatively similar, although the parameters in each
case were not.

In addition to "tting the data they were designed to "t well, the oscillatory systems
show some degree of generalization, in that they exhibit properties of the biological
system they were not explicitly designed to have. In a sense, the fact that they oscillate,
i.e. that their dynamics includes limit cycle attractors, is a generalization. This is
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Fig. 3. Behavior of the model compared to data taken from whole-cord swims. Solid line is the model, gray
line is the data, and dashed line is the resting membrane potential of the model cell. Note that the vertical
axis gives millivolts relative to the resting-membrane potential.

because the "tting algorithm simply found parameters which gave good agreement
with the 1.5 s targets, rather than explicitly &designing in' a limit cycle attractor.
Furthermore, the oscillatory systems were found to oscillate for values of x(t) other
than those of the targets, as shown in Fig. 4. In addition to interpolating reasonable
oscillations for values of x(t) in between those of the targets, the model also extrapo-
lates to values of x(t) outside the range of the targets.
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Fig. 4. Behavior of the model for varying levels of tonic excitation, x(t). Graphs show the voltage trajectory
of model cell 28 for di!erent levels of x(t) given at the left of each graph. Behavior of other model cells was
similar, in that all increased their frequency of oscillation while maintaining similar waveforms and relative
phases. Note that the vertical axis gives millivolts relative to the resting membrane potential.

Unfortunately, the oscillatory systems we have identi"ed in this way have not been
very robust to small changes in the free parameters. An example of this is given in
Fig. 5. This shows the result of increasing one parameter, I50/*#

28
, the amount of

depolarizing current injected into cell 28, by only 2%. As can be seen, this change
completely alters the system behavior. While not all of the system parameters appear
to be this sensitive, many are.
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Fig. 5. An example of model behavior when a single parameter, I50/*#
28

, the tonic depolarizing current
delivered to model cell 28 for x(t)"1, is increased by 2% from the "t value of 198 pA. The original behavior
is shown in Fig. 3. As can be seen, the model no longer oscillates.

7. Discussion

We have shown that a purely passive model is capable of generating an oscillation
that is similar to the biological oscillation, and of responding to increasing excitatory
input appropriately. However, these models appear to be quite sensitive to small
changes in the "t parameters, which is troublesome. Furthermore, the scope of the
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testing we have performed on these models in order to compare their behavior to the
biological systems' is incomplete. This is an area for future work.

Given the limited testing we have done, it is possible that the sensitivity of our
models to small changes in the parameter values is due to the targets being under-
constraining for the number of parameters we are trying to "t based on them. If there
are many parameter settings giving reasonably good agreement with the targets, then
the sensitivity of the models we have found may not be a universal feature of all
models "tting the data reasonably well. This needs further investigation, which we are
currently undertaking.

Another possibility is that our models are fragile for some more fundamental reason
that would hold for any set of parameters "tting the data. One possible reason for
fragility is the disparity between the inherent time scale of our model cells and that of
the desired oscillation. All of the cells in the model share the same membrane time
constant, q, given by the expression c

.
/g

-
. In our models, g

-
"12.5 nS and

c
.
"0.3 nF, yielding a time constant of 24 ms. This value of q is probably a reason-

able order-of-magnitude estimate based on the available physiological data, which is
admittedly rather incomplete. This is compared with the period of the oscillation,
which is (typically) 1 s. These di!er by a factor of 40, and we believe that this bears
directly on the parametric stability of the network. In particular, it can be derived that
the relative error in v

i
5 (relative to the RMS amplitude), call it e
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where ¹ is the period of the oscillation and e
I

is the relative error in the &tunable
current', i.e. the last two current terms in Eq. (1), which are tunable in that they are
changed, for constant v

i
, by changing the values of the parameters. Given the values of

¹ and q, the above expression implies that errors in the tunable current of 5% will give
rise to errors in v5

i
of approximately 35%. This is a substantial ampli"cation of error,

and may explain why small errors in the system parameters lead to substantial
degradation of the behavior. We are in the process of evaluating whether networks of
this kind do in fact display increasing sensitivity to parameter noise with increasing ¹.
If this is in fact the case, it would then behoove us to measure the passive time
constants of several of the swim CPG cells. If the true values are substantially larger
than our estimates, this could explain why our current model is more fragile than we
would expect the biology to be.

Our research program has been to begin by trying to understand the leech swim
CPG using the simplest possible model, and to turn to more complex models if and
when the simpler models were unable to explain the observed behavior. We have not
excluded the passive model yet, but if we are unable to adequately model the biology
using it, there are a number of possible modi"cations which are suggested by
experiment. One is to add voltage-activated currents to the model cells so that they
exhibit the phenomena of post-inhibitory rebound (PIR) and/or membrane relax-
ation. Both of these phenomena are observed in some cells of the swim CPG, and the
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possibility that they could contribute to the generation of the swim oscillation has
been suggested [5]. If the passive model should fail, we expect that this, perhaps in
concert with other physiologically realistic modi"cations, will produce systems which
more faithfully capture the workings of the biological system.
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